
2018年值得关注的5个大数据趋势
随着大数据系统日益高效,每年的大数据趋势变得更具开创性。根据调研机构Forrester Research最近发布的营销报告,随着组织的领导者开始意识到大量使用大数据技术所需的工作量,人工智能(AI)正在超越其流行术语的阶段。研究报告指出,实施人工智能来实现目标需要精确的部署、规划和治理。尽管如此,该报告预测随着大数据趋势进一步倾向于人工智能,该技术将有巨大的改进。实际上,Forrester公司预计将重新设计数据分析和管理角色,这将改变智能交付物流和创建新的信息市场。这种预测很有可能发生,因为多达70%的企业计划在2018年实施人工智能技术,比去年增加了50%以上。
然而,最近“福布斯”杂志发布的一篇文章从另一个角度看待人工智能的发展。这篇文章将人工智能作为一种资源,向消费者提供建议,为供应商提供暂定条款,并在工作场所引导员工,无需人工干预。该文章还预测,人工智能将对非结构化信息提供可操作的分析,这些信息可与大数据系统解析的结构化信息源的评估相媲美。此外,更多企业可以在未来几个月内获得使用数百TB的现有非结构化数据的能力。然而,2018年也是许多拥有这种信息量的公司(通常称为数据湖)将要求人工智能计划的投资回报的一年,如果资源不能产生可量化的改进,则可能会取消投资回报。
这只是对今年的人工智能和大数据发展提供了一个管窥。以下五个趋势让人们更加了解对2018年大数据发展的预期:
趋势1:增强网络安全
在法规要求的推动下,医疗护理提供商以惊人的速度推进了电子健康记录的实施。不幸的是,医疗保健网络安全违规行为一直在增长。事实上,近90%的医疗服务提供者在过去两年中都经历过数字安全漏洞的攻击,每个漏洞平均成本损失为220万美元。
由于特定医疗信息的高价值,网络攻击者为此被吸引。这种情况将会让医院承担失去患者信任的风险,迫使医疗护理提供商为他们的数字领域提供安全支持。
趋势2:改善社区警务
在美国,犯罪率在过去20年急剧下降。执法人员将这种改进归功于1994年推出的一种名为CompStat的大数据技术。该系统分析美国各地的统计数据,帮助警察更好地了解和打击犯罪。尽管有了这些重大改进,但官员们认为CompStat仍然没有发挥其全部潜力。当工程师们提供额外的能力时,将会有更多的改进,这使得警察部门能够监控过度使用武力的数据,并帮助预防犯罪。
趋势3:扩展的物联网(IoT)
如今,从家用电器到高级安全系统的各种电子设备都连接到互联网,并共享实时数据。这些连接的设备组合起来形成物联网(IoT)。物联网现在正在发展成为吸引企业注意力的成熟资源。到2021年,物联网支出预计将攀升至6万亿美元,分析师预测未来几年将出现大量敏感的智能网络设备。这一发展已经为企业使用人工智能和大数据解决方案利用物联网产生的信息洪流奠定了基础。事实上,分析师预测,2018年至2030年间,物联网将为全球生产总值贡献15万亿美元。
趋势4:大众的人工智能
人工智能正在超越企业巨头的唯一权限。一种新的“即插即用”人工智能业务解决方案即将上市并已被许多组织使用。这项创新技术包括广泛使用的聊天机器人和关键搜索引擎思想者等应用程序。
专家预测,大约75%的开发人员将在2018年年底之前将人工智能技术应用到他们的工作中。微软和亚马逊在开发Gluon网络项目方面的合作促进了这种趋势发展,它是一个用于人工智能开发者的开源的、易于使用的学习资源。由于这种透明度,大数据技术的市场已经接近340亿美元的收入。
趋势5:促进新职业角色的发展
首席数字官(CDO)的角色在2018年将具有更多的权重。目前,数据是全球最有价值的资源之一,首席数字官(CDO)的职责包括从数据中提取价值,更接近企业的行政领导人。资金来源相对于其组织规模而言较小的首席数字官(CDO)将面临在未来一年提出必要的可衡量和可行的结果方面的挑战。幸运的是,这些专业人员将拥有人工智能的灵活性和大数据分析的基础,以推动这项事业的发展成为现实。首席数字官(CDO)具有睿智和敏锐的能力,利用人工智能开发结构化的和非结构化的大数据集,为所有业务单元提供解决方案,将获得最有前途的职业发展。
企业、非营利组织和政府机构必须了解是什么因素激励消费者和客户,因为他们的需求和愿望会随着时间的推移而发生变化。正因为如此,大数据加上人工智能技术将比以往更加趋向研发的前沿,为组织利益相关者提供可行的报告,这些报告是从大量专有数据中获得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08