京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在利用深度学习模型解决有监督问题时,比如分类、回归、去噪等,我们一般的思路如下:
1、信息流forward propagation,直到输出端;
2、定义损失函数L(x, y | theta);
3、误差信号back propagation。采用数学理论中的“链式法则”,求L(x, y | theta)关于参数theta的梯度;
5、重复步骤3、4,直到收敛为止;
在第2步中,我们通常会见到多种损失函数的定义方法,常见的有均方误差(error of mean
square)、最大似然误差(maximum likelihood estimate)、最大后验概率(maximum posterior
probability)、交叉熵损失函数(cross entropy
loss),下面我们就来理清他们的区别和联系。一般地,一个机器学习模型选择哪种损失函数,是凭借经验而定的,没有什么特定的标准。具体来说,
(1)均方误差是一种较早的损失函数定义方法,它衡量的是两个分布对应维度的差异性之和。说点题外话,与之非常接近的一种相似性度量标准“余弦角”,则衡量的是两个分布整体的相似性,也即把两个向量分别作为一个整体,计算出的夹角作为其相似性大小的判断依据,读者可以认真体会这两种相似性判断标准的差异;
(2)最大似然误差是从概率的角度,求解出能完美拟合训练样例的模型参数theta,使得概率p(y | x, theta)最大化;
(3)最大化后验概率,即使得概率p(theta | x,
y)最大化,实际上也等价于带正则化项的最大似然概率(详细的数学推导可以参见Bishop 的Pattern Recognition And
Machine Learning),它考虑了先验信息,通过对参数值的大小进行约束来防止“过拟合”;
(4)交叉熵损失函数,衡量的是两个分布p、q的相似性。在给定集合上两个分布p和q的cross entropy定义如下:
其中,H(p)是p的熵,Dkl(p||q)表示KL-divergence。对于离散化的分布p和q,
在机器学习应用中,p一般表示样例的标签的真实分布,为确定值,故最小化交叉熵和最小化KL-devergence是等价的,只不过之间相差了一个常数。
值得一提的是,在分类问题中,交叉熵的本质就是似然函数的最大化。证明如下:
记带标签的样例为(x, y), 其中x表示输入特征向量,y=[y1, y2, …, yc]表示真实标签的one-hot表示,y_=[y1, y2, …, yc]表示模型输出的分布,c表示样例输出的类别数,那么。
(1)对于二分类问题,p(x)=[1, 0],q(x)=[y1, y2],y1=p(y=1|x)表示模型输出的真实概率,交叉熵H(p, q)=-(1*y1+0*y2)=-y1,显然此时交叉熵的最小化等价于似然函数的最大化;
(2)对于多分类问题, 假设p(x)=[0, 0, 0, …, 1, 0, 0],q(x)=[y1, y2, y3, …, yk, y(k+1), y(k+2)],即表示真实样例标签为第k类,yk=p(y=k|x)表示模型输出为第k类的概率,交叉熵H(p,q)=-(0*y1+0*y2+0*y3+…+1*yk+0*y(k+1)+0*y(k+2)) = -yk, 此时同上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19