
在利用深度学习模型解决有监督问题时,比如分类、回归、去噪等,我们一般的思路如下:
1、信息流forward propagation,直到输出端;
2、定义损失函数L(x, y | theta);
3、误差信号back propagation。采用数学理论中的“链式法则”,求L(x, y | theta)关于参数theta的梯度;
4、利用最优化方法(比如随机梯度下降法),进行参数更新;
5、重复步骤3、4,直到收敛为止;
在第2步中,我们通常会见到多种损失函数的定义方法,常见的有均方误差(error of mean
square)、最大似然误差(maximum likelihood estimate)、最大后验概率(maximum posterior
probability)、交叉熵损失函数(cross entropy
loss),下面我们就来理清他们的区别和联系。一般地,一个机器学习模型选择哪种损失函数,是凭借经验而定的,没有什么特定的标准。具体来说,
(1)均方误差是一种较早的损失函数定义方法,它衡量的是两个分布对应维度的差异性之和。说点题外话,与之非常接近的一种相似性度量标准“余弦角”,则衡量的是两个分布整体的相似性,也即把两个向量分别作为一个整体,计算出的夹角作为其相似性大小的判断依据,读者可以认真体会这两种相似性判断标准的差异;
(2)最大似然误差是从概率的角度,求解出能完美拟合训练样例的模型参数theta,使得概率p(y | x, theta)最大化;
(3)最大化后验概率,即使得概率p(theta | x,
y)最大化,实际上也等价于带正则化项的最大似然概率(详细的数学推导可以参见Bishop 的Pattern Recognition And
Machine Learning),它考虑了先验信息,通过对参数值的大小进行约束来防止“过拟合”;
(4)交叉熵损失函数,衡量的是两个分布p、q的相似性。在给定集合上两个分布p和q的cross entropy定义如下:
其中,H(p)是p的熵,Dkl(p||q)表示KL-divergence。对于离散化的分布p和q,
在机器学习应用中,p一般表示样例的标签的真实分布,为确定值,故最小化交叉熵和最小化KL-devergence是等价的,只不过之间相差了一个常数。
值得一提的是,在分类问题中,交叉熵的本质就是似然函数的最大化。证明如下:
记带标签的样例为(x, y), 其中x表示输入特征向量,y=[y1, y2, …, yc]表示真实标签的one-hot表示,y_=[y1, y2, …, yc]表示模型输出的分布,c表示样例输出的类别数,那么。
(1)对于二分类问题,p(x)=[1, 0],q(x)=[y1, y2],y1=p(y=1|x)表示模型输出的真实概率,交叉熵H(p, q)=-(1*y1+0*y2)=-y1,显然此时交叉熵的最小化等价于似然函数的最大化;
(2)对于多分类问题, 假设p(x)=[0, 0, 0, …, 1, 0, 0],q(x)=[y1, y2, y3, …, yk, y(k+1), y(k+2)],即表示真实样例标签为第k类,yk=p(y=k|x)表示模型输出为第k类的概率,交叉熵H(p,q)=-(0*y1+0*y2+0*y3+…+1*yk+0*y(k+1)+0*y(k+2)) = -yk, 此时同上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03