京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在利用深度学习模型解决有监督问题时,比如分类、回归、去噪等,我们一般的思路如下:
1、信息流forward propagation,直到输出端;
2、定义损失函数L(x, y | theta);
3、误差信号back propagation。采用数学理论中的“链式法则”,求L(x, y | theta)关于参数theta的梯度;
4、利用最优化方法(比如随机梯度下降法),进行参数更新;
5、重复步骤3、4,直到收敛为止;
在第2步中,我们通常会见到多种损失函数的定义方法,常见的有均方误差(error of mean
square)、最大似然误差(maximum likelihood estimate)、最大后验概率(maximum posterior
probability)、交叉熵损失函数(cross entropy
loss),下面我们就来理清他们的区别和联系。一般地,一个机器学习模型选择哪种损失函数,是凭借经验而定的,没有什么特定的标准。具体来说,
(1)均方误差是一种较早的损失函数定义方法,它衡量的是两个分布对应维度的差异性之和。说点题外话,与之非常接近的一种相似性度量标准“余弦角”,则衡量的是两个分布整体的相似性,也即把两个向量分别作为一个整体,计算出的夹角作为其相似性大小的判断依据,读者可以认真体会这两种相似性判断标准的差异;
(2)最大似然误差是从概率的角度,求解出能完美拟合训练样例的模型参数theta,使得概率p(y | x, theta)最大化;
(3)最大化后验概率,即使得概率p(theta | x,
y)最大化,实际上也等价于带正则化项的最大似然概率(详细的数学推导可以参见Bishop 的Pattern Recognition And
Machine Learning),它考虑了先验信息,通过对参数值的大小进行约束来防止“过拟合”;
(4)交叉熵损失函数,衡量的是两个分布p、q的相似性。在给定集合上两个分布p和q的cross entropy定义如下:
其中,H(p)是p的熵,Dkl(p||q)表示KL-divergence。对于离散化的分布p和q,
在机器学习应用中,p一般表示样例的标签的真实分布,为确定值,故最小化交叉熵和最小化KL-devergence是等价的,只不过之间相差了一个常数。
值得一提的是,在分类问题中,交叉熵的本质就是似然函数的最大化。证明如下:
记带标签的样例为(x, y), 其中x表示输入特征向量,y=[y1, y2, …, yc]表示真实标签的one-hot表示,y_=[y1, y2, …, yc]表示模型输出的分布,c表示样例输出的类别数,那么。
(1)对于二分类问题,p(x)=[1, 0],q(x)=[y1, y2],y1=p(y=1|x)表示模型输出的真实概率,交叉熵H(p, q)=-(1*y1+0*y2)=-y1,显然此时交叉熵的最小化等价于似然函数的最大化;
(2)对于多分类问题, 假设p(x)=[0, 0, 0, …, 1, 0, 0],q(x)=[y1, y2, y3, …, yk, y(k+1), y(k+2)],即表示真实样例标签为第k类,yk=p(y=k|x)表示模型输出为第k类的概率,交叉熵H(p,q)=-(0*y1+0*y2+0*y3+…+1*yk+0*y(k+1)+0*y(k+2)) = -yk, 此时同上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09