京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据+浅关系在运营商中的深度应用
随着互联网社交的渗透,我们的QQ、微信好友越来越多,但叫得出名字的少,真正见面的更少,虽然人们的虚拟伙伴增加了,但是却日益孤独寂寞。我们把这种虚拟的关系叫做浅关系。这种关系的特征有三个:
1、碎裂人格场景。交际圈子不断变大,交往却越来越浅,这种浅体现在人的不同场合的浅关系,也有专家称其为碎裂人格场景,如工作圈子只聊工作,爱好圈子只聊爱好等。
2、开放的刺猬。陌生交流越来越多,防范意识越来越重,人们不断渴望与外界交流,但对陌生人的恐惧和防备倍增,这种防御甚至延伸到原来的好友身上,每个人都变成了开放的刺猬。
3、死循环。日益孤独寂寞,又渴望交流,由于渴望交流,使得浅关系的恶性循环不断。
社交专家指出,任何网上的沟通交流,都必须转化为点对点的线下沟通,才能有助于关系的深化,利用运营商的大数据,沿着这个方向的促进,成为运营商关系营销的发展新趋势。
一、发现浅关系,运营商大数据发力
由于互联网厂商缺乏对通信通道的大数据攫取能力,因此不管是微信,QQ还是陌陌,都要求用户导入本机主的通信录,并且同意其读取好友动态,这种发现关系圈的方式一方面引来用户本身对隐私的抵触,二来,仅仅凭借通信录来确认的关系,并不能区分用户的关系场景,举个简单例子,我们经常与某工作伙伴电话沟通,当这个号码出现在通信录的时候,社交软件并不能区分得出这个号码与我们是处于哪个碎片场景的,更不能识别出过去交往的频率。
随着大数据+在运营商中的火热兴起,代表着用户语音通话、短信使用的MC口大数据,代表着用户互联网使用行为的GN、GB口数据,代表着用户过往使用营销方案的CRM数据,这些数据的组合,便成为了运营商嗅探客户浅关系圈子的关键平台,笔者在实际工作中,将这种嗅探分为3个步骤:
1、数的处理。从采集到传输,将复杂繁多的数据抽丝剥茧,选择需要的,并使用动态技术对各口数据进行映射式采集入库,动态处理。通过这种方式能获得每个号码的实时数据,且更新存储便捷。
2、数的识别。什么样的交往频率对应什么层次的关系?这种关系应用在哪些碎片场景?什么样的行为与什么样的碎片场景匹配?通过建模和数据标本建立,使得我们采集的数据能立即生成对应的关系层和场景。
3、数的使用。大数据价值的变现决定了所有的大数据都需要具有价值,因此,通过浅关系模型生成的数据具有对接任何营销渠道的基础,能便捷地接入使用。
运营商大数据浅关系模型的优势在于,这些大数据来源于客户通信的核心通道,并且经过科学的样本对标、模型运算而来,其关系的准确度、快速响应能力远非互联网厂家可比。
二、运用浅关系,运营商大数据变现
上述第一步实现了给出一个号码,便能得到该号码的实时关系圈和圈子的业务倾向属性等。与传统营销不同,浅关系的运用,侧重协助客户深化想要的关系,在深化过程中,收获业务利润:
1、帮助客户找到归属。
很多客户有着很多的关系圈,但是他们却很孤独寂寞,这从他们的识别模型网络行为关键字中可以嗅探到。通过浅关系模型的运营,我们一方面不断为该用户提供周围用户的对应动态,另外一方面,为该用户与其他用户将浅关系的场景属性强化。举例,A用户为典型的没有组织归属感的用户,但在实际嗅探中,我们发现A用户十分喜欢武侠小说,因此,通过浅关系模型,我们抓出与A用户有关系有同样爱好的用户组成圈子,并不断赋予内容业务的优惠,为其搭建沟通桥梁,使得内容业务场景圈子逐渐成为A生活中的归属圈子。
2、帮助用户深化沟通。
许多浅关系用户无法记住自己的大量好友,也无法知道自己的好友特定时候的需求,通过关系嗅探,我们为这些用户提供目标用户的动态和营销优惠,促使用户与用户之间建立点对点的沟通,从而促进关系。举个例子,A用户喜欢一面之缘的B用户,现在运营商为其提供流量共享、转赠等方式,以二次确认的方式为A联系B提供初始条件,这样A便有理由去联系B,并日后与B加强联系了。
3、帮助线上关系转为线下关系
许多浅关系在互联网上本身就有了一定的积累,如这个时候运营商结合商家优惠,为其推送个电影票优惠、美食优惠等,有一定几率能促使这种关系线下化。
除却上述的SNS、O2O、P2P等运营方式,浅关系也应为传统营销提供号码标签,如家庭业务、集团业务等具有关系属性类业务。
三、可视化浅关系,运营商大数据进阶
从对内业务运营到对外客户服务,即使大数据可视化的进阶。营销的标签化,到客户服务的便利性,这是大数据必须跨越的一大步。当浅关系运营成熟,客户逐渐可以从被动,甚至完全不知情地接受浅关系营销的情况,变为关系的可视化,通过客户的申请,付费即可查阅自身的浅关系各种维度,一键购买与之相关的产品服务,这样,大数据变现即不在是难题。
综上,浅关系是笔者在从事运营商大数据市场营销工作中的一点感悟,这种由点到面,由面成圈的营销方式或许是大数据发展的一个重要方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28