京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据+浅关系在运营商中的深度应用
随着互联网社交的渗透,我们的QQ、微信好友越来越多,但叫得出名字的少,真正见面的更少,虽然人们的虚拟伙伴增加了,但是却日益孤独寂寞。我们把这种虚拟的关系叫做浅关系。这种关系的特征有三个:
1、碎裂人格场景。交际圈子不断变大,交往却越来越浅,这种浅体现在人的不同场合的浅关系,也有专家称其为碎裂人格场景,如工作圈子只聊工作,爱好圈子只聊爱好等。
2、开放的刺猬。陌生交流越来越多,防范意识越来越重,人们不断渴望与外界交流,但对陌生人的恐惧和防备倍增,这种防御甚至延伸到原来的好友身上,每个人都变成了开放的刺猬。
3、死循环。日益孤独寂寞,又渴望交流,由于渴望交流,使得浅关系的恶性循环不断。
社交专家指出,任何网上的沟通交流,都必须转化为点对点的线下沟通,才能有助于关系的深化,利用运营商的大数据,沿着这个方向的促进,成为运营商关系营销的发展新趋势。
一、发现浅关系,运营商大数据发力
由于互联网厂商缺乏对通信通道的大数据攫取能力,因此不管是微信,QQ还是陌陌,都要求用户导入本机主的通信录,并且同意其读取好友动态,这种发现关系圈的方式一方面引来用户本身对隐私的抵触,二来,仅仅凭借通信录来确认的关系,并不能区分用户的关系场景,举个简单例子,我们经常与某工作伙伴电话沟通,当这个号码出现在通信录的时候,社交软件并不能区分得出这个号码与我们是处于哪个碎片场景的,更不能识别出过去交往的频率。
随着大数据+在运营商中的火热兴起,代表着用户语音通话、短信使用的MC口大数据,代表着用户互联网使用行为的GN、GB口数据,代表着用户过往使用营销方案的CRM数据,这些数据的组合,便成为了运营商嗅探客户浅关系圈子的关键平台,笔者在实际工作中,将这种嗅探分为3个步骤:
1、数的处理。从采集到传输,将复杂繁多的数据抽丝剥茧,选择需要的,并使用动态技术对各口数据进行映射式采集入库,动态处理。通过这种方式能获得每个号码的实时数据,且更新存储便捷。
2、数的识别。什么样的交往频率对应什么层次的关系?这种关系应用在哪些碎片场景?什么样的行为与什么样的碎片场景匹配?通过建模和数据标本建立,使得我们采集的数据能立即生成对应的关系层和场景。
3、数的使用。大数据价值的变现决定了所有的大数据都需要具有价值,因此,通过浅关系模型生成的数据具有对接任何营销渠道的基础,能便捷地接入使用。
运营商大数据浅关系模型的优势在于,这些大数据来源于客户通信的核心通道,并且经过科学的样本对标、模型运算而来,其关系的准确度、快速响应能力远非互联网厂家可比。
二、运用浅关系,运营商大数据变现
上述第一步实现了给出一个号码,便能得到该号码的实时关系圈和圈子的业务倾向属性等。与传统营销不同,浅关系的运用,侧重协助客户深化想要的关系,在深化过程中,收获业务利润:
1、帮助客户找到归属。
很多客户有着很多的关系圈,但是他们却很孤独寂寞,这从他们的识别模型网络行为关键字中可以嗅探到。通过浅关系模型的运营,我们一方面不断为该用户提供周围用户的对应动态,另外一方面,为该用户与其他用户将浅关系的场景属性强化。举例,A用户为典型的没有组织归属感的用户,但在实际嗅探中,我们发现A用户十分喜欢武侠小说,因此,通过浅关系模型,我们抓出与A用户有关系有同样爱好的用户组成圈子,并不断赋予内容业务的优惠,为其搭建沟通桥梁,使得内容业务场景圈子逐渐成为A生活中的归属圈子。
2、帮助用户深化沟通。
许多浅关系用户无法记住自己的大量好友,也无法知道自己的好友特定时候的需求,通过关系嗅探,我们为这些用户提供目标用户的动态和营销优惠,促使用户与用户之间建立点对点的沟通,从而促进关系。举个例子,A用户喜欢一面之缘的B用户,现在运营商为其提供流量共享、转赠等方式,以二次确认的方式为A联系B提供初始条件,这样A便有理由去联系B,并日后与B加强联系了。
3、帮助线上关系转为线下关系
许多浅关系在互联网上本身就有了一定的积累,如这个时候运营商结合商家优惠,为其推送个电影票优惠、美食优惠等,有一定几率能促使这种关系线下化。
除却上述的SNS、O2O、P2P等运营方式,浅关系也应为传统营销提供号码标签,如家庭业务、集团业务等具有关系属性类业务。
三、可视化浅关系,运营商大数据进阶
从对内业务运营到对外客户服务,即使大数据可视化的进阶。营销的标签化,到客户服务的便利性,这是大数据必须跨越的一大步。当浅关系运营成熟,客户逐渐可以从被动,甚至完全不知情地接受浅关系营销的情况,变为关系的可视化,通过客户的申请,付费即可查阅自身的浅关系各种维度,一键购买与之相关的产品服务,这样,大数据变现即不在是难题。
综上,浅关系是笔者在从事运营商大数据市场营销工作中的一点感悟,这种由点到面,由面成圈的营销方式或许是大数据发展的一个重要方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17