京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业通过实施客户关系管理,可以降低成本,增加收入,提高业务运作效率。对于每一个面临竞争的公司,数据仓库是必须最终拥有的市场武器。通过它可以更多地了解客户的需求以及处理这些需求的方法。数据挖掘能够对将来的趋势和行为进行预测,从而很好地支持人们的决策。作为专门管理企业前台的客户关系管理为企业提供了一个收集、分析和利用各种客户信息的系统,帮助企业充分利用其客户管理资源,也为企业在电子商务时代从容自如地面对客户提供了科学手段和方法。建立和维持客户关系是取得竞争优势的唯一的最重要的基础,
这是网络化经济和电子商务对传统商业模式变革的直接结果。
1 客户关系管理(CRM)
1.1 内容
CRM的概念由美国Gartner集团率先提出。我们认为,CRM是辨识、获取、保持和增加“可获利客户”的理论、实践和技术手段的总称。它既是一种国际领先的、以“客户价值”为中心的企业管理理论、商业策略和企业运作实践,也是一种以信息技术为手段、有效提高企业收益、客户满意度、雇员生产力的管理软件。
客户关系管理(CRM)源于以“客户为中心”的新型商业模式,是一种旨在改善企业与客户之间关系的新型管理机制。通过向企业的销售、市场和客户服务的专业人士提供全面、个性化的客户资料,并强化跟踪服务、信息分析的能力,使他们能够协同建立和维护一系列与客户和生意伙伴之间卓有成效的“一对一关系”,使企业得以提供更快捷和周到的优质服务、提高客户满意度、吸引和保持更多的客户,增加营业额。通过信息共享和优化商业流程有效地降低企业经营成本。
1.2 CRM解决方案的组成
CRM作为企业管理系统软件,通常由以下三部分组成:
(1)网络化销售管理系统(Sales Distributor
Management,SDM)。该模块以市场和销售业务为主导,对销售的流程进行了详细的管理,是销售管理人员进行管理和销售业务员销售自动化的重要工具。它实现了销售过程中对客户的集中管理和协同管理,销售管理人员可以随时对销售情况进行分析,具体功能包括客户接待管理、报价单处理、销售合同管理、回款单处理、综合查询功能、综合统计功能。
(2)客户服务管理系统(Customer Service Management,CSM)。该模块主要对企业的售后服务进行管理,加快售后服务的响应速度,提高客户满意度,对服务人员进行考核,加强对产品质量的监督。
客户服务系统最典型的代表就是呼叫中心环境,通过呼叫中心环境布署并且实现基于电话、Web的自助服务。它们使企业能够以更快的速度和更高的效率来满足其客户的独特需求。由于在多数情况下,客户忠实度和是否能从该客户身上赢利取决于企业能否提供优质的服务,因此,客户服务和支持对许多企业就变得十分关键。
(3)企业决策信息系统(Executive Information System,EIS)。随着电子商务时代的到来,
各行各业业务操作流程的自动化,企业内产生了数以几十或上百GB计的大量业务数据。这些数据和由此产生的信息是企业的财富,它如实地记录着企业运作的本质状况。但是面对如此海量的数据,迫使人们不断寻找新的工具,来对企业的运营规律进行探索,为商业决策提供有价值的知识,使企业获得利润。能满足企业这一迫切需求的强有力的工具就是数据挖掘。
1.3 CRM的实施
CRM项目的实施可以分为3步:①应用业务集成。将独立的市场管理,销售管理与售后服务进行集成,提供统一的运作平台。将多渠道来源的数据进行整合,实现业务数据的集成与共享;②业务数据分析。对CRM系统中的数据进行加工、处理与分析这将使企业受益匪浅。对数据的分析可以采用OLAP的方式进行,生成各类报告。也可以采用业务数据仓库(Business
Information Warehouse)的处理手段,对数据做进一步的加工与数据挖掘,分析各数据指标间的关联关系,建立关联性的数据模型用于模拟和预测;③决策执行。依据数据分析所提供的可预见性的分析报告,企业可以将在业务过程中所学到的知识加以总结利用,对业务过程和业务计划等做出调整。[page] 2数据挖掘
2.1 什么是数据挖掘
数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解模式的非平凡过程。数据挖掘的广义观点:数据挖掘就是从存放在数据库,数据仓库或其它信息库中的大量的数据中“挖掘”有趣知识的过程。数据挖掘,又称为数据库中知识发现(Knowledge Discovery in Database,KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程由以下步骤组成:
①数据清理;②数据集成;③数据选择;④数据变换;⑤数据挖掘;⑥模式评估;⑦知识表示。数据挖掘可以与用户或知识库交互。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。在客户关系管理(CRM)中,数据挖掘的应用是非常广泛的。CRM中的客户分类,客户赢利率分析,客户识别与客户保留等功能都要借助数据挖掘来实现。
2.2数据挖掘在CRM中的应用
比较典型的数据挖掘方法有关联分析、序列模式分析、分类分析、聚类分析等。它们可以在以客户为中心的企业决策分析和管理的各个不同领域与阶段得到应用。
2.2.1 关联分析
关联分析,即利用关联规则进行数据挖掘。关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如“90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。
2.2.2 序列模式分析
序列模式分析和关联分析相似,但侧重点在于分析数据间的前后序列关系。它能发现数据库中形如“在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A→B→C出现的频度较高”之类的知识。序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,
挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。在进行序列模式分析时,同样也需要由用户输入最小置信度C和最小支持度S。
2.2.3 分类分析
设有一个数据库和一组具有不同特征的类别(标记),该数据库中的每一个记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其它数据库中的记录进行分类。
2.2.4 聚类分析
聚类分析输入的是一组未分类记录,并且这些记录应分成几类事先也不知道,通过分析数据库中的记录数据,根据一定的分类规则,合理地划分记录集合,确定每个记录所在类别。它所采用的分类规则是由聚类分析工具决定的。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。
3 结束语
应用数据挖掘技术,较为理想的起点就是从一个数据仓库开始。这个数据仓库,里面应保存着所有客户的合同信息,并且还应该有相应的市场竞争对手的相关数据。数据挖掘可以直接跟踪数据,辅助用户快速作出商业决策。用户还可以在更新数据的时候不断发现更好的行为模式,并将其运用于未来的决策当中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21