京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场,一般有精准营销和大数据风控两个方面。业内人士建议,通过大数据挖掘金融价值,使数据资产成为金融机构的核心竞争力。
再复杂的其本质也简单,金融大数据的运用与发展就是其一。
近来网贷平台频暴雷,根本原因除了外部监管趋严、市场利空、经营不善以外,不外乎资金错配、假标盛行、借款人恶意欠债等,这些原因用简单的办法就可以得到解决:其中大多可以通过大数据征信来解决信息不对称。而大数据征信是利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿以及欺诈风险。在金融风控领域,大数据指的是全量数据和用户行为数据。大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场。
大数据在金融领域应用:精准营销和大数据风控
据苏宁金融研究院高级研究员薛洪言介绍,大数据在金融领域的应用,一般有精准营销和大数据风控两个方面。
薛洪言表示,精准营销是基于行为数据去预测用户的偏好和兴趣,继而推荐合适的金融产品。对于大数据风控,其逻辑便在于“未来是过去的重复”,即用已经发生的行为模式和逻辑来预测未来。这意味着,随着随机事件的大量发生,是可以发现其内在规律的。而大数据里包含的海量数据,为我们发觉隐藏在随机事件后面的规律提供了条件。而大数据风控的两个应用,信用风险和欺诈风险,背后都是这个逻辑,通过分析历史事件,找到内在规律,建成模型,然后用新的数据去验证和进化这个模型。
贵阳大数据交易所执行总裁王叁寿告诉中国经济时报记者,截至2017年底,中国网民规模达到7.72亿,手机网民规模达到7.53亿。随着我国加快IPv6、5G的商用部署,数据总量将呈现爆发式增长。从某种角度而言,数据详实记录了发展中的世界,而大数据使未来复现成为可能。大数据是无限循环、无限复制的绿色资源,应用次数越多,其价值越大,将会颠覆未来很多产业的竞争模式。对于当前而言,大数据是国家基础性战略资源、创新生产要素、是21世纪的“钻石矿”;对于未来而言,大数据是“活化石”。
大数据应用水平正成金融企业竞争力的核心要素
至于金融大数据的未来,有分析称,数据驱动金融将是一种趋势,谁掌握了大数据,金融营销、金融风控就会胜出。
中国支付清算协会业务协调部丁华明认为,一个关键的因素是大数据应用水平正在成为金融企业竞争力的核心要素。金融的核心是风控,风控以数据为导向。金融机构的风控水平直接影响坏账率、营收和利润。目前,金融机构正在加大在数据治理项目中的投入,结合大数据平台建设项目,构建企业内统一的数据池,实现数据的“穿透式”管理。在大数据时代,数据治理是金融机构需要深入思考的命题,有效的数据资产管控,可以使数据资产成为金融机构的核心竞争力。
普华永道的研究报告显示,83%的中国金融机构希望投资大数据。金融行业对大数据的需求属于业务驱动型。其迫切希望应用大数据技术使营销更精准、风险识别更准确、经营决策更具针对性、产品更具吸引力,从而降低企业成本,提高企业利润。随着更多金融机构基于大数据获得丰厚的回报,将进一步打消其顾虑,加速大数据的普及。
上述报告还称,各级政府正推动金融行业数据整合、共享和开放。国务院《促进大数据发展行动纲要》提出,到2018年,中央政府层面实现金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统通过统一平台进行数据共享和交换。国家还通过推动建设各类大数据服务交易平台,为数据使用者提供更丰富的数据来源。数据越关联越有价值、越开放越有价值。大数据的发展需要所有组织和个人的共同协作,将个人私有、企业自有、政府自有的数据进行整合,把私有大数据变为公共大数据。金融数据安全问题也越来越受到重视。大数据的应用为数据安全带来新的风险。数据具有高价值、无限复制、可流动等特性,这些特性为数据安全管理带来了新的挑战。
对金融机构来说,网络恶意攻击成倍增长,组织数据被窃的事件层出不穷。这对金融机构的数据安全管理能力提出了更高的要求。大数据使得金融机构内海量的高价值数据得到集中,并使数据实现高速存取。但是,如果出现信息泄露,可能一次性泄露组织内近乎全部的数据资产。数据泄露后还可能急速扩散,甚至出现更加严重的数据篡改和智能欺诈的情况。
2018年是金融行业监管大年,“防风险”依然是行业发展主旋律。“近年来大数据风控越来越受重视,越被市场认可,我们越要做好风险防控工作,合规发展。”百融金服副总裁陈雷指出,不仅金融业务要合规经营,大数据风控行业也要合规发展。
以当下正经历暴雷潮的网贷行业为例,陈雷认为,以P2P为代表的互联网金融原来只要“有胆量”就能发展起来的时代已经过去了,现在是需要拥抱科技的时代,要通过大数据挖掘金融价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22