
大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场,一般有精准营销和大数据风控两个方面。业内人士建议,通过大数据挖掘金融价值,使数据资产成为金融机构的核心竞争力。
再复杂的其本质也简单,金融大数据的运用与发展就是其一。
近来网贷平台频暴雷,根本原因除了外部监管趋严、市场利空、经营不善以外,不外乎资金错配、假标盛行、借款人恶意欠债等,这些原因用简单的办法就可以得到解决:其中大多可以通过大数据征信来解决信息不对称。而大数据征信是利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿以及欺诈风险。在金融风控领域,大数据指的是全量数据和用户行为数据。大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场。
大数据在金融领域应用:精准营销和大数据风控
据苏宁金融研究院高级研究员薛洪言介绍,大数据在金融领域的应用,一般有精准营销和大数据风控两个方面。
薛洪言表示,精准营销是基于行为数据去预测用户的偏好和兴趣,继而推荐合适的金融产品。对于大数据风控,其逻辑便在于“未来是过去的重复”,即用已经发生的行为模式和逻辑来预测未来。这意味着,随着随机事件的大量发生,是可以发现其内在规律的。而大数据里包含的海量数据,为我们发觉隐藏在随机事件后面的规律提供了条件。而大数据风控的两个应用,信用风险和欺诈风险,背后都是这个逻辑,通过分析历史事件,找到内在规律,建成模型,然后用新的数据去验证和进化这个模型。
贵阳大数据交易所执行总裁王叁寿告诉中国经济时报记者,截至2017年底,中国网民规模达到7.72亿,手机网民规模达到7.53亿。随着我国加快IPv6、5G的商用部署,数据总量将呈现爆发式增长。从某种角度而言,数据详实记录了发展中的世界,而大数据使未来复现成为可能。大数据是无限循环、无限复制的绿色资源,应用次数越多,其价值越大,将会颠覆未来很多产业的竞争模式。对于当前而言,大数据是国家基础性战略资源、创新生产要素、是21世纪的“钻石矿”;对于未来而言,大数据是“活化石”。
大数据应用水平正成金融企业竞争力的核心要素
至于金融大数据的未来,有分析称,数据驱动金融将是一种趋势,谁掌握了大数据,金融营销、金融风控就会胜出。
中国支付清算协会业务协调部丁华明认为,一个关键的因素是大数据应用水平正在成为金融企业竞争力的核心要素。金融的核心是风控,风控以数据为导向。金融机构的风控水平直接影响坏账率、营收和利润。目前,金融机构正在加大在数据治理项目中的投入,结合大数据平台建设项目,构建企业内统一的数据池,实现数据的“穿透式”管理。在大数据时代,数据治理是金融机构需要深入思考的命题,有效的数据资产管控,可以使数据资产成为金融机构的核心竞争力。
普华永道的研究报告显示,83%的中国金融机构希望投资大数据。金融行业对大数据的需求属于业务驱动型。其迫切希望应用大数据技术使营销更精准、风险识别更准确、经营决策更具针对性、产品更具吸引力,从而降低企业成本,提高企业利润。随着更多金融机构基于大数据获得丰厚的回报,将进一步打消其顾虑,加速大数据的普及。
上述报告还称,各级政府正推动金融行业数据整合、共享和开放。国务院《促进大数据发展行动纲要》提出,到2018年,中央政府层面实现金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统通过统一平台进行数据共享和交换。国家还通过推动建设各类大数据服务交易平台,为数据使用者提供更丰富的数据来源。数据越关联越有价值、越开放越有价值。大数据的发展需要所有组织和个人的共同协作,将个人私有、企业自有、政府自有的数据进行整合,把私有大数据变为公共大数据。金融数据安全问题也越来越受到重视。大数据的应用为数据安全带来新的风险。数据具有高价值、无限复制、可流动等特性,这些特性为数据安全管理带来了新的挑战。
对金融机构来说,网络恶意攻击成倍增长,组织数据被窃的事件层出不穷。这对金融机构的数据安全管理能力提出了更高的要求。大数据使得金融机构内海量的高价值数据得到集中,并使数据实现高速存取。但是,如果出现信息泄露,可能一次性泄露组织内近乎全部的数据资产。数据泄露后还可能急速扩散,甚至出现更加严重的数据篡改和智能欺诈的情况。
2018年是金融行业监管大年,“防风险”依然是行业发展主旋律。“近年来大数据风控越来越受重视,越被市场认可,我们越要做好风险防控工作,合规发展。”百融金服副总裁陈雷指出,不仅金融业务要合规经营,大数据风控行业也要合规发展。
以当下正经历暴雷潮的网贷行业为例,陈雷认为,以P2P为代表的互联网金融原来只要“有胆量”就能发展起来的时代已经过去了,现在是需要拥抱科技的时代,要通过大数据挖掘金融价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15