
大数据金融会带来什么
近年来,大数据和其衍生的技术成为了各行各业争相追捧的对象,对于金融行业来说,大数据金融也给了业绩很高的期望,它会给金融行业带来怎样的变化?
对于金融研究领域的从业者而言,大数据技术早就融入进了绝大部分研究者的日常工作当中。
如果只停留在对大数据字面意义的理解来分类,所有的金融实证研究例如应用型金融资产定价、市场微观结构等,早在三四十年前就引入了对海量数据的统计分析技术。最著名的案例包括尤金·法玛和肯尼斯·弗伦奇教授在上世纪九十年代初期,一系列关于市场风险溢价因子的研究论文,后来对于资产组合管理理论以及具有里程碑意义的三因子理论模型的提出,都是基于对美国和当时全球主要发达国家的证券市场过去几十年的交易数据深度统计研究的结果上获得的。更不要说当代关于市场微观结构的理论文献,每一项成果的背后无不凝聚着对高达十几甚至上百千兆字节海量高频行情和交易数据深度挖掘而归纳出的智慧结晶。所以传统的大数据应用对于金融理论研究领域来讲,其实并不属于门外的陌生人。
大数据的概念,并不能仅仅局限在突出数据的“多且海量”这一个方面的特征,其实它也需要囊括对数据“新且多元”的这么一层深刻理解。针对金融行业以及金融研究领域的大数据应用上,更应该强调它“新且多元”的一面。
过往我们所熟悉的金融研究文献,它需要搜集采纳的数据一般就是金融资产的市场交易数据。但是现在越来越多的创新型金融研究理论和模型的研发,已经跳出了对传统交易数据的唯一路径依赖,而采用了多样化的数据来源和格式,例如卫星影像数据、互联网搜索数据、人脸识别数据、图像声纹数据、媒体文本数据和社交通讯数据等。
“新且多元”的大数据,已经越来越明显地改变了金融行业的从业生态和重塑了金融研究的实践思维。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15