
Python处理命令行参数模块optpars用法实例分析
本文实例讲述了Python处理命令行参数模块optpars用法。分享给大家供大家参考,具体如下:
optpars是python中用来处理命令行参数的模块,可以自动生成程序的帮助信息,功能强大,易于使用,可以方便的生成标准的,符合Unix/Posix 规范的命令行说明。
使用 add_option() 来加入选项,使用 parse_args() 来解析命令行。
add_option()中参数
第一个参数表示option的缩写,以单个中划线引导,例如-f、-d,只能用单个字母,可以使用大写;
第二个参数表示option的全拼,以两个中划线引导,例如--file、--Opencv_version;
第一第二个参数可以单独使用,也可以同时使用,但必须保证有其中一个;
从第三个参数开始是命名参数,是可选参数,常用的几个:
type=: 表示输入命令行参数的值的类型,默认为string,可以指定为string, int, choice, float,complex其中一种;
default=: 表示命令参数的默认值;
metavar=: 显示到帮助文档中用来提示用户输入期望的命令参数;
dest=:指定参数在options对象中成员的名称,如果没有指定dest参数,将用命令行参数名来对options对象的值进行存取。
help=: 显示在帮助文档中的信息;
解析命令行
(options, args) = parse.parse_args()
或在main(argv)函数里:
(options, args) = parser.parse_args(argv)
options,是一个对象(optpars.Values),保存有命令行参数值。通过命令行参数名,如 file,访问其对应的值: options.file ;
args,是一个由 positional arguments 组成的列表;
optparse使用
import sys
from optparse import OptionParser
parser = OptionParser()
parser.add_option('-f','--file',type=str,default='./image',help='file path of images',dest='file_path')
parser.add_option('--weights','-w',type=str,default='./weights_saved',help="file location of the trained network weights")
parser.add_option('--iterations','-i',type=int,default=10000,help='iteration time of CRNN Net')
parser.add_option('--gpu','-g',type=int,default=0,help="gpu id")
def main(argv):
(options, args) = parser.parse_args()
(options, args) = parser.parse_args(argv) # both OK
print 'file path of images: ' + options.file_path
print "file location of the trained network weights: " + options.weights
print 'iteration time of CRNN Net: ' + str(options.iterations)
print 'gpu id: ' + str(options.gpu)
if __name__ == '__main__':
main(sys.argv)
查看帮助文档:
python test.py -h
显示:
Usage: test.py [options]
Options:
-h, --help show this help message and exit
-f FILE_PATH, --file=FILE_PATH
file path of images
-w WEIGHTS, --weights=WEIGHTS
file location of the trained network weights
-i ITERATIONS, --iterations=ITERATIONS
iteration time of CRNN Net
-g GPU, --gpu=GPU gpu id
输入命令行参数:
python test.py -f ../tensorflow/train_image -w ../tensorflow/weights -i 5000 -g 2
输出:
file path of images: ../tensorflow/train_image
file location of the trained network weights: ../tensorflow/weights
iteration time of CRNN Net: 5000
gpu id: 2
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18