
Python处理命令行参数模块optpars用法实例分析
本文实例讲述了Python处理命令行参数模块optpars用法。分享给大家供大家参考,具体如下:
optpars是python中用来处理命令行参数的模块,可以自动生成程序的帮助信息,功能强大,易于使用,可以方便的生成标准的,符合Unix/Posix 规范的命令行说明。
使用 add_option() 来加入选项,使用 parse_args() 来解析命令行。
add_option()中参数
第一个参数表示option的缩写,以单个中划线引导,例如-f、-d,只能用单个字母,可以使用大写;
第二个参数表示option的全拼,以两个中划线引导,例如--file、--Opencv_version;
第一第二个参数可以单独使用,也可以同时使用,但必须保证有其中一个;
从第三个参数开始是命名参数,是可选参数,常用的几个:
type=: 表示输入命令行参数的值的类型,默认为string,可以指定为string, int, choice, float,complex其中一种;
default=: 表示命令参数的默认值;
metavar=: 显示到帮助文档中用来提示用户输入期望的命令参数;
dest=:指定参数在options对象中成员的名称,如果没有指定dest参数,将用命令行参数名来对options对象的值进行存取。
help=: 显示在帮助文档中的信息;
解析命令行
(options, args) = parse.parse_args()
或在main(argv)函数里:
(options, args) = parser.parse_args(argv)
options,是一个对象(optpars.Values),保存有命令行参数值。通过命令行参数名,如 file,访问其对应的值: options.file ;
args,是一个由 positional arguments 组成的列表;
optparse使用
import sys
from optparse import OptionParser
parser = OptionParser()
parser.add_option('-f','--file',type=str,default='./image',help='file path of images',dest='file_path')
parser.add_option('--weights','-w',type=str,default='./weights_saved',help="file location of the trained network weights")
parser.add_option('--iterations','-i',type=int,default=10000,help='iteration time of CRNN Net')
parser.add_option('--gpu','-g',type=int,default=0,help="gpu id")
def main(argv):
(options, args) = parser.parse_args()
(options, args) = parser.parse_args(argv) # both OK
print 'file path of images: ' + options.file_path
print "file location of the trained network weights: " + options.weights
print 'iteration time of CRNN Net: ' + str(options.iterations)
print 'gpu id: ' + str(options.gpu)
if __name__ == '__main__':
main(sys.argv)
查看帮助文档:
python test.py -h
显示:
Usage: test.py [options]
Options:
-h, --help show this help message and exit
-f FILE_PATH, --file=FILE_PATH
file path of images
-w WEIGHTS, --weights=WEIGHTS
file location of the trained network weights
-i ITERATIONS, --iterations=ITERATIONS
iteration time of CRNN Net
-g GPU, --gpu=GPU gpu id
输入命令行参数:
python test.py -f ../tensorflow/train_image -w ../tensorflow/weights -i 5000 -g 2
输出:
file path of images: ../tensorflow/train_image
file location of the trained network weights: ../tensorflow/weights
iteration time of CRNN Net: 5000
gpu id: 2
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15