
百个业务员的销售分析,你的Excel还够用吗
每个老板都希望每天醒来,能清楚了解公司的销售状况。
但当公司的业务开展到数十个省市,有上百个业务员时,老板就像是被关进了小黑屋。只有在各个大区负责人来汇报,告诉你公司业务的内容与细节,才能在小黑屋上开个小窗:哦,原来我们销售状况是这样的啊。
这时老板往往会制定一大堆复杂的销售绩效,要求各个分、子公司填写各种各样的销售数据,用Excel做这样那样的销售分析报表,梦想着每天早上看看几十个Excel报表就知道运营中存在的所有问题。
想象很美好,现实很骨感
从电话呼出,销售拜访,需求分析……各个环节的转化率。
截止昨日为止,我们这一季度的销售回款率。
所有月销售同比下滑超过10%的区域、品类、渠道、销售员,实时通知责任人整改。
……
这些需求对老板再平常不过了。但是想要满足这些需求可不简单,在过去如何实现这些需求呢?
做个Excel的数据模板下发到各个分、子公司用来收集数据,开个电话会议,布置工作,解释填报的规则。(耗时1天)
收到反馈回来的数据,发现其中有着各种各样的问题,比如填错了客户公司名称、漏写了地区字段、单元格格式错误……需要一一校对。(耗时3天)
从市一级公司,到省一级,再到大区,最后再到总公司,以上流程都要再走一遍,半个月都过去了。
拿着这堆过时的数据还能再做什么决策呢?
为了解决这些问题,公司可能已经上了ERP、CRM等各种系统。
但系统间的数据不打通,生成的报表只有固定的几个字段,如果需要额外数据,只能找IT部门帮忙从业务系统中导出,再将N张Excel的数据合并到一张表格中,而这才完成了做销售分析的数据准备工作。
比如为了查询销售回款率,往往需要在财务系统中生成报表,查询实际入账金额,然后将数据导入Excel中,再与CRM生成的报表匹配,查询该笔销售的负责人。
“
怎样才能实时拿到最鲜活的销售数据,让数据流像神经一样遍布企业的各个组织,反馈一线最真实的运营状态?
”
找个简单的办法搞定他
F-One采用了组件化的设计,有开放的API接口,有指标建模引擎,能自定义工作流,有多级权限管理,有报表引擎,可以自定义仪表盘,最重要的是F-One能把这些模块组件联动起来。
通过打通CRM、ERP、订单系统的数据,F-One直接将需要的数据抽取到系统中。不需要再找IT,跑各种各样的数据,再将数据清洗,合并到一张Excel中。
▲F-One的数据流不需要懂SQL等IT技能,点击拖拽就能完成从数据抽取、清洗、合并等数据准备流程。
根据这些数据,公司能定义管理层最为关心的指标销售同比增长、产品盈利率、销售预算执行率等。将这些核心指标的计算逻辑配置到F-One中,这样F-One就能自动整合各个数据源,实时计算出企业核心指标:
特别需要提到的是,F-One是面向业务人员的业务建模和数据分析平台,不需要IT部门过多的支持,业务部门就能修改各个指标的计算逻辑。
举个简单的例子,过去计算产品应收账款回款率时,只计算了当期到款与当期销售两个维度,现在老板要将期初应收也加入计算公式中。
过去,业务部门可能得去找IT部门重新导出报表。在F-One中,业务部门只需要在系统中调整计算公式,就能生成新的考核指标,不需要额外的IT开发支持:
F-One能让所有的分、子公司都在一个表单中填写数据,实时同步数据,不需要像过去一样层层申报。
除此之外,F-One还提供多种权限设置规则。可以根据职务、职能的不同,限制用户能进行的操作,以及访问的数据。
例如,末级销售员只能填报、编辑自己负责区域内的销售额:
华东区销售总监可以看到上海、福建、浙江、江苏、安徽、山东的所有销售数据:
大老板则可以通过F-One的可视化报表查看提炼过的数据洞察,了解全面的销售情况:
按需配置,在同一平台实现协同数据分析,并且让企业核心数据只被应该看到的人看到,不会出现不必要的扩散(比如在过去,需要大量初级人员整理销售量、回款数额等企业核心数据)。如果数据出现异常,比如上海的应收账款回款率率出现大幅度下降,系统会自动发送预警邮件给负责人,及时跟进整改。
虽然公司所属行业不同、产品不同,销售分析关注的指标自然也各有不同。但所有的企业都面临相同的问题,随着公司规模扩大,组织架构越来越复杂,数据量越来越大,Excel手工统计的方式不仅耗时,而且准确率极低。即使部署了大量IT系统,业务部门依然需要等待IT支持,无法快速响应业务运营的需求。
该制定怎样的渠道政策激活经销商?哪种绩效考核能提升销售效率?产品的库存结构是否合理……在面对决策时,老板依然只能“凭经验、靠感觉”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18