京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百个业务员的销售分析,你的Excel还够用吗
每个老板都希望每天醒来,能清楚了解公司的销售状况。
但当公司的业务开展到数十个省市,有上百个业务员时,老板就像是被关进了小黑屋。只有在各个大区负责人来汇报,告诉你公司业务的内容与细节,才能在小黑屋上开个小窗:哦,原来我们销售状况是这样的啊。
这时老板往往会制定一大堆复杂的销售绩效,要求各个分、子公司填写各种各样的销售数据,用Excel做这样那样的销售分析报表,梦想着每天早上看看几十个Excel报表就知道运营中存在的所有问题。
想象很美好,现实很骨感
从电话呼出,销售拜访,需求分析……各个环节的转化率。
截止昨日为止,我们这一季度的销售回款率。
所有月销售同比下滑超过10%的区域、品类、渠道、销售员,实时通知责任人整改。
……
这些需求对老板再平常不过了。但是想要满足这些需求可不简单,在过去如何实现这些需求呢?
做个Excel的数据模板下发到各个分、子公司用来收集数据,开个电话会议,布置工作,解释填报的规则。(耗时1天)
收到反馈回来的数据,发现其中有着各种各样的问题,比如填错了客户公司名称、漏写了地区字段、单元格格式错误……需要一一校对。(耗时3天)
从市一级公司,到省一级,再到大区,最后再到总公司,以上流程都要再走一遍,半个月都过去了。
拿着这堆过时的数据还能再做什么决策呢?
为了解决这些问题,公司可能已经上了ERP、CRM等各种系统。
但系统间的数据不打通,生成的报表只有固定的几个字段,如果需要额外数据,只能找IT部门帮忙从业务系统中导出,再将N张Excel的数据合并到一张表格中,而这才完成了做销售分析的数据准备工作。
比如为了查询销售回款率,往往需要在财务系统中生成报表,查询实际入账金额,然后将数据导入Excel中,再与CRM生成的报表匹配,查询该笔销售的负责人。
“
怎样才能实时拿到最鲜活的销售数据,让数据流像神经一样遍布企业的各个组织,反馈一线最真实的运营状态?
”
找个简单的办法搞定他
F-One采用了组件化的设计,有开放的API接口,有指标建模引擎,能自定义工作流,有多级权限管理,有报表引擎,可以自定义仪表盘,最重要的是F-One能把这些模块组件联动起来。
通过打通CRM、ERP、订单系统的数据,F-One直接将需要的数据抽取到系统中。不需要再找IT,跑各种各样的数据,再将数据清洗,合并到一张Excel中。
▲F-One的数据流不需要懂SQL等IT技能,点击拖拽就能完成从数据抽取、清洗、合并等数据准备流程。
根据这些数据,公司能定义管理层最为关心的指标销售同比增长、产品盈利率、销售预算执行率等。将这些核心指标的计算逻辑配置到F-One中,这样F-One就能自动整合各个数据源,实时计算出企业核心指标:
特别需要提到的是,F-One是面向业务人员的业务建模和数据分析平台,不需要IT部门过多的支持,业务部门就能修改各个指标的计算逻辑。
举个简单的例子,过去计算产品应收账款回款率时,只计算了当期到款与当期销售两个维度,现在老板要将期初应收也加入计算公式中。
过去,业务部门可能得去找IT部门重新导出报表。在F-One中,业务部门只需要在系统中调整计算公式,就能生成新的考核指标,不需要额外的IT开发支持:
F-One能让所有的分、子公司都在一个表单中填写数据,实时同步数据,不需要像过去一样层层申报。
除此之外,F-One还提供多种权限设置规则。可以根据职务、职能的不同,限制用户能进行的操作,以及访问的数据。
例如,末级销售员只能填报、编辑自己负责区域内的销售额:
华东区销售总监可以看到上海、福建、浙江、江苏、安徽、山东的所有销售数据:
大老板则可以通过F-One的可视化报表查看提炼过的数据洞察,了解全面的销售情况:
按需配置,在同一平台实现协同数据分析,并且让企业核心数据只被应该看到的人看到,不会出现不必要的扩散(比如在过去,需要大量初级人员整理销售量、回款数额等企业核心数据)。如果数据出现异常,比如上海的应收账款回款率率出现大幅度下降,系统会自动发送预警邮件给负责人,及时跟进整改。
虽然公司所属行业不同、产品不同,销售分析关注的指标自然也各有不同。但所有的企业都面临相同的问题,随着公司规模扩大,组织架构越来越复杂,数据量越来越大,Excel手工统计的方式不仅耗时,而且准确率极低。即使部署了大量IT系统,业务部门依然需要等待IT支持,无法快速响应业务运营的需求。
该制定怎样的渠道政策激活经销商?哪种绩效考核能提升销售效率?产品的库存结构是否合理……在面对决策时,老板依然只能“凭经验、靠感觉”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15