
数据仓库在信息管理中的现实应用
一、引言
信息化管理的目的是将一般信息抽象化,提取出用户需要的信息。但在大量数据的提取中,如何更准确的挖掘出最有价值的信息和数据,单单采用传统的关系型数据库是难以实现的。数据仓库技术可解决这一难题。
数据仓库是支持管理决策过程的、面向主题的、集成的、不可更新的且随时间不断变化的数据集合。利用数据仓库,对源数据经过提取、转换、加载形成统一的数据格式,再利用数据挖掘和OLAP分析工具为决策者提供所需的信息。数据仓库是要建立在一个较全面完善的信息应用基础上,用于支持高层决策分析,而数据库仍承担日常处理事务。
二、从数据库到数据仓库
传统的数据库技术是以单一的数据资源为中心,进行事务处理、批处理、决策分析等各种数据处理工作,分为操作型处理和分析型处理两类。操作型处理指对数据库联机的日常操作,通常是对单个纪录的查询修改,注重响应时间、数据的安全性和完整性;分析型处理用于管理人员的决策分析,经常要访问大量历史数据。传统数据库系统难以实现对数据分析的处理要求,无法满足数据处理多样化的要求,为更好的支持决策,对数据进行再加工,从而形成综合的、面向分析的环境,即数据仓库。
数据仓库系统包括:数据仓库技术;联机分析处理技术;数据挖掘技术。
三、数据仓库的数据组织
(一)数据组织结构。数据仓库中的数据分四个级别:早期细节级、当前细节级、轻度综合级、高度综合级。源数据经过综合后,先进入当前细节级,根据具体需要进行综合,从而进入轻度综合级乃至高度综合级,老化的数据将进入早期细节级,数据仓库中存在着不同的综合级别,称为“粒度”。粒度越大,表明细节程度越低,综合程度越高。
(二)数据组织形式。简单堆积文件:将每日由数据库中提取并加工的数据逐天积累并存储起来。轮转综合文件:数据存储单位被分为日、周、月、年等几个级别。简化直接文件:间隔一定时间的数据库快照。连续文件:通过比较两个简单直接文件的不同而生成的。
四、数据仓库在信息管理的应用
数据的抽取:通过抽取将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入到数据仓库。
数据的存储和管理:数据仓库中数据按层次进行贮存,有多维数据库存贮、虚拟存贮、基于关系数据表存贮三种方式。数据仓库的构建:数据仓库的构建不可能一次成型,可采用原型法先建立一个小的原型数据仓库,考察其主要属性,用以学习,必要时进行修改,最后形成一个完整的数据仓库。
数据仓库Dw是一个面向主题、集成,随时间变化,便是信息本身相对稳定的数据集合,用于对管理决策过程的支持。数据库系统中存贮的大量数据能成为医院、学校等事业单位日常评估的依赖,为单位管理人员决策提供重要依据,使管理工作更具可行性、科学性和准确性。
五、结束语
本文对数据库与数据仓库进行了比较分析,在此基础上对数据仓库的基本理论和关键技术进行了分析,对事业单位信息管理系统中历史数据的挖掘,可以在较大时间跨度上把握单位发展的规律、特点,全面分析影响因素,更准确的把握单位业务等各方面开展情况。但数据仓库是一个新兴的领域,其建设及技术具有很大的复杂性,仍有许多方面需要进一步深入研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29