京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据仓库在信息管理中的现实应用
一、引言
信息化管理的目的是将一般信息抽象化,提取出用户需要的信息。但在大量数据的提取中,如何更准确的挖掘出最有价值的信息和数据,单单采用传统的关系型数据库是难以实现的。数据仓库技术可解决这一难题。
数据仓库是支持管理决策过程的、面向主题的、集成的、不可更新的且随时间不断变化的数据集合。利用数据仓库,对源数据经过提取、转换、加载形成统一的数据格式,再利用数据挖掘和OLAP分析工具为决策者提供所需的信息。数据仓库是要建立在一个较全面完善的信息应用基础上,用于支持高层决策分析,而数据库仍承担日常处理事务。
二、从数据库到数据仓库
传统的数据库技术是以单一的数据资源为中心,进行事务处理、批处理、决策分析等各种数据处理工作,分为操作型处理和分析型处理两类。操作型处理指对数据库联机的日常操作,通常是对单个纪录的查询修改,注重响应时间、数据的安全性和完整性;分析型处理用于管理人员的决策分析,经常要访问大量历史数据。传统数据库系统难以实现对数据分析的处理要求,无法满足数据处理多样化的要求,为更好的支持决策,对数据进行再加工,从而形成综合的、面向分析的环境,即数据仓库。
数据仓库系统包括:数据仓库技术;联机分析处理技术;数据挖掘技术。
三、数据仓库的数据组织
(一)数据组织结构。数据仓库中的数据分四个级别:早期细节级、当前细节级、轻度综合级、高度综合级。源数据经过综合后,先进入当前细节级,根据具体需要进行综合,从而进入轻度综合级乃至高度综合级,老化的数据将进入早期细节级,数据仓库中存在着不同的综合级别,称为“粒度”。粒度越大,表明细节程度越低,综合程度越高。
(二)数据组织形式。简单堆积文件:将每日由数据库中提取并加工的数据逐天积累并存储起来。轮转综合文件:数据存储单位被分为日、周、月、年等几个级别。简化直接文件:间隔一定时间的数据库快照。连续文件:通过比较两个简单直接文件的不同而生成的。
四、数据仓库在信息管理的应用
数据的抽取:通过抽取将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入到数据仓库。
数据的存储和管理:数据仓库中数据按层次进行贮存,有多维数据库存贮、虚拟存贮、基于关系数据表存贮三种方式。数据仓库的构建:数据仓库的构建不可能一次成型,可采用原型法先建立一个小的原型数据仓库,考察其主要属性,用以学习,必要时进行修改,最后形成一个完整的数据仓库。
数据仓库Dw是一个面向主题、集成,随时间变化,便是信息本身相对稳定的数据集合,用于对管理决策过程的支持。数据库系统中存贮的大量数据能成为医院、学校等事业单位日常评估的依赖,为单位管理人员决策提供重要依据,使管理工作更具可行性、科学性和准确性。
五、结束语
本文对数据库与数据仓库进行了比较分析,在此基础上对数据仓库的基本理论和关键技术进行了分析,对事业单位信息管理系统中历史数据的挖掘,可以在较大时间跨度上把握单位发展的规律、特点,全面分析影响因素,更准确的把握单位业务等各方面开展情况。但数据仓库是一个新兴的领域,其建设及技术具有很大的复杂性,仍有许多方面需要进一步深入研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22