
难言之隐:数据迁移的五大陷阱和风险
当前企业有越来越多的数据需要分析,处理,就是所谓的大数据。而如此“繁重”的大数据在进行迁移会出现很多问题,本文概述了10个常见的数据迁移问题
计算机系统之间的数据传输或存储格式从来就不是一个轻松的任务,特别是当它涉及结构化和非结构化的数据。
“复杂的数据迁移工作意味着超负荷运行和延迟都是很长常见的”,Arvind Singh(以下简称辛格),芝加哥一家企业的数据解决方案提供商的联合创始人兼CEO表达了以上观点。
在《信息周刊》的一次电话采访中,Arvind Singh概述了10个常见的数据迁移问题,其中包括五个陷阱和五个风险,以此警告企业应该竭力避免。
大数据迁移的五大陷阱
陷阱#1:未能吸引业务线和业务用户开始。
当公司合并多个系统整合到一个--通常发生在兼并后--他们需要从确定正确的商业用途开始。
你需要确定谁知道和理解业务数据,辛格说。
“谁是你业务的专家?这当然不是IT或系统集成商。”
换句话说,把那些数据使用精英搬进迁移项目。
毕竟,只有他们才能将那些操作系统玩转一旦上线。
陷阱#2:没有数据管理策略和组织结构。
“你已经将系统A的数据移动到系统B,但谁拥有管理结构?谁有权利在系统中创建、批准、编辑或删除数据?”辛格问。
还有一些问题必须解决:你设置了数据管理了吗?有一个业务流程来管理数据周期吗?另外,你有数据管理员在公司吗?
陷阱#3:在原始系统数据质量差。
公司经常意识不到一个“原有评估”是至关重要的数据迁移工作铺垫。
“了解原始系统里的数据的质量是一个巨大的陷阱,但企业常常不愿意花足够的时间,”辛格说。
必须要考虑的问题:现有的数据支持新用户吗?它缺少什么?你打算怎么做,你现在不能够做什么?
一个详细的评估让企业能够更容易地估计需要的工作量来成功地迁移原始数据。
陷阱#4:忽略验证和定义业务规则。
你公司的业务和验证规则可能不是最新的。
“难以让人相信一个公司在达成业务规则时花了多短的时间,更不用说确保数据符合业务规则,”辛格说。
“换句话说,你认为你有一个业务规则,但是你的现有数据是否匹配,细致,或遵循这个规定?”
此外,审计人员需要确保数据从原始系统到新的系统是有效的,特别是当这个迁移涉及关键信息,如金融、库存、和就业数据。[page]
陷阱#5:未能验证和测试数据迁移过程。
不要以为这是最后一步了。
“你绝对绝对要确保在整个过程中你一直在验证和测试,”辛格说。
必须要考虑的问题:你打算怎样测试数据?谁将测试和评估? 谁将签署它吗?以及谁将是数据的最终消费者?
“这一过程必须贯穿项目的始终,但不幸的是公司通常”不花足够的时间校准数据的测试和验证“辛格说。
大数据迁移的五大风险
风险#1:被委托进行数据迁移项目的员工缺乏实战经验。
一个公司的员工可能非常擅长他们所做的事,但这并不意味着他们是在数据管理、迁移和治理是专家。
”他们是数据的创作者和消费者,但是他们并不是完全熟练运用工具、过程、服务、模板和加速器,“辛格说。
风险#2:你的团队太依赖工具的开发工作。
这个问题往往是导致缺乏经验的员工。一个数据迁移项目通常是IT部门的事,但可能并没被专业训练过。迁移工具使用不当最终会迁移了错误数据。”这是类似于把垃圾传来传去,“辛格说。
你的目标,当然是快速、可靠地传输数据。重要的是你如何运用数据迁移工具,和”你搭配的有什么样的加速器和模板,辛格说。
风险#3:交叉对象依赖性。
“我无法告诉你我有多少次坐在会议上,(客户)说,‘我们刚刚发现了一个全新的资料来源,我们甚至都不知道自己需要移动的',”辛格说。
交叉对象依赖常常很晚才被发现。一个复杂的项目可能会有60、70、甚至80个不同的数据对象中来自一百个左右的应用程序。
“当我们与客户谈生意时,我们寻找丢失的数据块,或者相关数据,”辛格说。
事实上,交叉对象依赖性--并在后来发现新的数据来源的过程--是主要的风险,可以打乱你的迁移的时间表。
风险#4:试图在一个大的上传之后去上线。
这是一个灾难,辛格说,因为你在假设一切都是完美的,你将能够简单地点击一个按钮,和所有的数据将负载得完美无瑕。“这是个很大的风险,”他说。“你需要一个项目时间轴,复杂的,长期的测试负载的道路。”
风险#5:预算超支由于不适当的范围或准备工作的欠缺。
这经常发生在,当一个组织认为它的系统集成商(SI)会照顾到这些细节。
“大多数系统集成商通常不处理数据只是说,’我将连接管道使原始数据移动到一个目标系统‘,”辛格说。
“在现实阶段,我们可以调用到数据迁移项目,”他说,“人们说:’看,数据没有捆绑在一起,我们无法进行用户测试。‘”
这个问题,当然,会导致成本超支和毁坏的时间表。
如今IT
面临的最大挑战之一,是风险评估。风险的度量和影响评估不是一门确切的科学,而是有工具、过程和原理,可用于确保组织很好地被保护,高级管理层消息灵通。在我们的Measuring
Risk: A Security Pro's
Guide测量风险中:一个安全专业人员的指导报告中,我们推荐工具来评估安全风险和提供一些想法供有效地将结果数据投入到业务中去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29