京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云计算为BI行业带来曙光
BI和云计算的结合将为BI带来如下的显著特征:
(1)云计算使得BI具有处理海量数据的能力。能够处理海量的数据是BI系统提供智能的保障,是BI存在的基础,但是传统的BI在运算能力上还存在很大的缺陷。在数据挖掘的过程中BI往往面临大量的数据,比如一次小规模的数据挖掘所需要的数据也要有几个GB或者十几个GB,而稍大规模的数据挖掘要处理的数据量可以达到十几个TB的规模,有些公司年业务数据量能够达到几千个TB。云计算的出现让BI很好的摆脱了传统Unix平台所面临的窘境,使得其具有处理海量数据的能力,经试验BI系统的处理能力可以提高十几到几十倍,为BI系统的“智能”提供保障。
(2)云计算环境下,BI的共享性将成为最重要的优势之一。现实的企业运行情况表明,公司之间及公司内部协调性并不理想,共享服务呼之欲出。企业的发展重心应该是其核心业务,而通过不同区域和国家的非核心业务进行共享合作,可以使不同部门实现更好的协同、规模效应和成本节约。云计算下的BI提供了一个信息共享的平台,可以通过强有力的信息共享、数据共享、计算共享等手段实现实体共享服务中心的功能。由于云计算下BI的共享性,可以将分布在不同地区的信息资源和智力资源进行整合,能够使企业通过规模经济、流程再造、管理聚焦等手段提升企业的效率。
(3)云计算能够提升BI的时效性。企业对BI系统时效性的要求没有得到满意的解决,造成这种实时性需求的压力主要来源于企业多种业务的需求。目前,大部分企业并没有真正的实时反应的商业智能系统,所提供的信息还无法达到即时反馈的要求。提升BI系统的时效性有着一些先天的困难,比如虽然可以轻松的检测到特定的交易,但无法即时的获取客户的个人数据和历史交易记录等,另外在实际的操作中可能会受到人为因素的影响,比如一些人为的锚误等。但是,BI系统时效性的提升并没有完全丧失操作上的可能性,比如数据仓库技术就是时效性提升的一个突破。但其与云计算下的BI相比仍有不足的地方,比如企业仓库运行的平台单一,虽然它有着很快的运算速度,但无法与云计算的速度相比,云计算能够让BI在更短的时间内获取并下载交易数据,能够执行更强的数据分析功能,运行更强大的业务活动检测工具,在业务发生的同时提供更好的信息反馈。云计算下的BI可以随时加载分散于不同地理位置的业务数据,很好的让历史数据和个人数据整合,实现高级的BI功能,让企业从中获益。
(4)云计算与BI的结合增强了BI系统的开放性。企业对信息具有很高的实时性要求,有时效性的商业决策才能引导企业做出正确的经营决策,但是传统的BI是相对封闭的,这也成为了它提供实时性智慧服务的阻碍。这一矛盾将在云计算环境下得到改观,因为在云计算环境下系统处理的数据将具有更好的时效性,整个数据的挖掘过程将具有更好的开放性,从而满足企业对信息的时效性的要求。BI系统处在相对开放的环境中可以拥有很好的扩展性,使得BI能够满足企业不断变化的需求,为企业提供更具个性化的服务。
(5)云计算与BI的结合将降低成本。云计算的出现使得BI可以运行在云上,通过相应的服务提供商提供云计算的服务完成BI的功能,企业只需要支付相应的服务费便可以运行自己的BI系统,这样企业既省去了购买服务器的成本又可以得到小型的服务器无法实现的功能。例如Google的PC集群的成本要比昂贵的商用服务器低得多,但是功能上要比商用服务器还要强大。中国移动的试验成本也比小型机系统的成本低得多,只占小型机系统的六分之一。
另外,由于云的出现使得企业可以方便地得到云提供的服务,这样使得企业不必再花费资金和时间来对BI系统进行维护,这也是节约成本的重要因素之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27