
最近自己对机器学习比较感兴趣,做个笔记,还请大牛不喜轻喷,多多指教。
朴素贝叶斯分类基于概率论中的贝叶斯原理:
P(A|B) = P(B|A)*P(A)/P(B)
所谓朴素即是特征属性之间相互独立的对分类结果发生影响。
所以对应的概率公式可改写为P(c|x) = P(x|c)|p(c) / P(x)
其中:
P(c) 是类‘先验概率’
P(x|c) 是样本x对于类标记c的类条件概率(或称似然)
P(x)叫做证据因子
由于朴素贝叶斯假定所有特征属性独立,所以
P(x|c)= P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c)
P(x) = P(x1) * P(x2) * … * P(xn)
所以
P(c|x) = P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c) * P(c) /
p(x)。 因为 P(c) / p(x)是固定值,所以我们一般只需要计算P(x|c),找出最大似然即可
Ps:
对于离散属性而言,P(x1|c) = 训练集中属性为x1且分类为c的数目|训练集中分类c的数目
对于离散属性而言,一般假定其概率分布为高斯分布
取个例1:
症状 职业 疾病
打喷嚏 护士 感冒
打喷嚏 农夫 过敏
头痛 建筑工人 脑震荡
头痛 建筑工人 感冒
打喷嚏 教师 感冒
头痛 教师 脑震荡
现在又来了是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
由上可知
求P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒) P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏)
P(建筑工人|感冒) = 1/3
P(打喷嚏|感冒) = 2/3
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 = 1/3
P(打喷嚏) = 3/6 = 1/2
所以
P(感冒|打喷嚏*建筑工人) = (1/3 * 2/3 * 1/2 ) / (1/3 * 1/2) = 2/3
再取个例2(来自机器学习(周志华)):
我们要求一个:
根据朴素贝叶斯定理:
我们有
P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =
P(色泽=青绿|好瓜=是) * P(根蒂=蜷缩|好瓜=是) * P(敲声=浊响|好瓜=是) * P(纹理=清晰|好瓜=是) *
P(脐部=凹陷|好瓜=是) * P(触感=硬滑|好瓜=是) * P(密度=0.697|好瓜=是) * P(含糖率=0.46|好瓜=是) *
P(好瓜=是) / (P(色泽=青绿) * P(根蒂=蜷缩) * P(敲声=浊响) * P(纹理=清晰) * P(脐部=凹陷)
* P(触感=硬滑) * P(密度=0.697) * P(含糖率=0.46))
P(好瓜=是) = 8/17
P(色泽=青绿|好瓜=是) = 3/8
…
(好瓜=是的瓜密度均值为0.574, 方差 = 0.129)
P(色泽=青绿|好瓜=是) = exp(-(0.697-0.574)^2 / 2*0.129)) / sqrt((2*π)*0.129) ≈ 1.959
…
结果P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) = 0.038
同理
P(好瓜=否|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =0.000068
所以分类到好瓜中。
特别的,如果样本中有,但是训练集中没有,这样就有可能导致分类不合理。
例如在例1 中 如果样本中出现职业一个打喷嚏的学生,那么最后算出来的结果,P(感冒|打喷嚏*学生) = 0,很明显是不对的。
拉普拉斯修正修正原理很简单:设Ni对于分类为c第i个特征属性的可能取到的类别数目
,那么:
P(xi|c) =( |Dc,xi|+1) / (|Dc|+Ni )
其中 |Dc,xi| 表示训练集中分类为c的特征属性为xi的数目, |Dc| 表示训练集中分类为c的数目。
在例1 经过修正后
P(建筑工人|感冒) = (1+1)/(3+4) = 2/7
P(打喷嚏|感冒) = (2+1)/(3+2) =3/5
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 =1/3
P(打喷嚏) = 3/6 = 1/2
P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒)P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏) = (2/7 * 3/71/2) / (1/31/2) = 2/35
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18