
数据挖掘与社交媒体结合产生价值
数据治理构架层面的人员致力于技能和责任,而组织协调层面则侧重于各级部门之间的工作关系。在开始数据治理之旅时,很多企业在企业现有构架内实现决策责任、资源分配和职责分配,当然,早期的商业价值和企业动力都以这样的方式传递。但是,要真正把数据治理看作一个整体,努力为跨企业的多个部门带来利益时, 目前你的组织结构势必要去适应它。
在定义一个理想的组织结构,以支持您的数据治理目标时,需要解决的问题包括:
谁将成为执行发起人?最佳的执行人将是非常资深的CXO级别的高管层,他们的职责跨职能、业务、应用和区域筒仓(指区域办事处或国际化经营而出现的各国代表处)。
需要建立一个执行筹划指导委员会吗?对于任何一个拥有几千名以上员工或者超过10亿美元收入的企业来讲,这是非常普遍的,并且也是最好的方法,组成一个执行筹划指导委员会或者理事会,以支持和推动跨职能的决策、确定优先次序、资源和变更管理。这个执行筹划指导委员会当然要包括执行发起人、相关的业务和IT领导层,以及数据治理项目的管理者,他们将帮助企业确定可操作的议程安排--一般需要在每个月、每两个月或者每季度举办一次会议。
谁是业务数据的持有者?每条业务线、每个职能小组、每个地区都有不同的优先权,
业务流程、决策、相互合作尤为关键,从而支持他们的关键性能指标(KPIs),以实现KPIs为目标的业务管理者,必须接受角色问责来确保数据支持能够满足需求。
什么是政策和数据冲突的升级路径?谁将会是参与者,以缓和异常的数据质量或安全原则、相关规则以及标准?举例而言,如果你为客户确定了数据获取原则,则需要含有完整姓名、地址、电话或电子邮件以联系客户。当你收购了一家公司,并试图整合客户数据库中大量丢失的信息时会发生什么?谁来决定该去做什么?
过程又是怎样的?
数据管理员是全职还是兼职?找到一个合适的数据管理员是大多数公司面临的挑战。最好的数据管理员应该是跨业务和IT的顶级行业专家,但是,如果他们已经声名在外,业界对他们的需求会很旺盛,他们可为你工作的时间则会捉襟见肘。所以你会恳求他们去做一个兼职的数据管理员,或者你去聘请一个可以奉献更多时间,但缺乏专业技能的人去做一个全职的数据管理员?这里没有一个正确的答案,但是综合以上的方法,或许会是一个好的战略考量。
数据管理员与执行发起人是直线还是虚线汇报关系?数据管理员直接汇报给执行发起人是不可能的,但是如果他们在一个组织之内呢?除非你打算集中管理你的数据管理工作,许多相关领域专家在组织内按现有业务线、业务职能和地区汇报则是可能的,他们拥有专业知识,与执行发起人和/或数据治理管理者之间也会拥有虚线/虚拟的员工关系。
我强烈建议数据治理管理者利用一个类似RACI或DACI的职责分派矩阵(responsibility assignment matrix),以帮助多方参与者协调并设置一个期望值,这些参与者涉及到数据治理的所有方面 (RACI定义了责任、解释说明、咨询以及了解项目相关进展信息的角色。DACI则提供了类似的框架,并定义了管理者、审批者、提供者、以及了解项目相关进展信息的角色。)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15