
数据科学的5个常见误解,看完想走弯路都难
尽管大数据、机器学习和预测分析带来了巨大的好处,但数据科学对于各种规模的企业来说,仍然是一个的敏感话题。很多人不仅不愿意采用相关的系统和硬件,而且在转型时,在收集信息这一步上就落后了其他人。
美国的企业、组织和政府的混乱数据每年为美国经济带来高达3.1万亿美元的负担。更糟糕的是,14.9%的营销人员声称他们根本不知道什么是大数据。数据显示群众对大数据和数据科学方面知识匮乏。学习如何使用这些数据是这个行业的一部分,似乎同时也成了一个巨大的障碍。
你可能会问:关于数据科学的错误概念是什么?项目管理人员和业务经理需要注意什么?让我们一起仔细探讨一下。
1. 数据量决定准确性
如果打算开始收集大量信息,然后使用现代化的系统和工具来分析这些信息,那么这个观点这是需要马上消除的一个误解。大量的数据并不一定意味着高精度,也不意味着能从数据中获得更多的价值,某些数据本身就毫无价值。
在收集数据之后,应该通过一系列步骤对数据进行筛选。
1. 了解你需要分析哪些数据集,以及如何才能最完美的完成任务。
2. 从数据中提取有用的信息或可操作的见解。
3. 运用这些见解来完善流程。
4. 微调以上的流程,创建一个流畅的数字数据机器。
以上每一个步骤不仅需要您了解相关数据,并且需要了解如何使用这些数据,没有任何一个步骤与数据量有关。数据量不重要。重要的是如何利用数据,以及如何正确应用到您的业务中去。
2. 数据科学就是商业智能
商业智能和数据科学经常被混淆,那些不那么熟悉这个行业的人更是感到迷茫。它们并不是同义词。商业智能涉及数据,但更多的是关于组织的运营等。这个过程你需要回答诸如what、when、who和how等问题。数据科学是与预测分析相关。目标是收集足够的信息,以建立可识别的模式和见解。此外,数据科学更多的是与数据挖掘、统计和定量分析有关,对于预测建模、多变量测试和流程计划有着非常关键的作用。不要把数据科学和商业智能这两个概念混淆。
3.数据量决定一切
许多中小型企业认为大数据技术就一定需要大量的数据。事实并非如此,批量数据是目标,但是也不是说需要数百万的客户来提取见解。
IBM将数据科学定义为由四个基本的“V”组成 --- 数量、速度、品种和准确性。如果您可以把您的数据结构化到这些类别或概念中,对大数据分析很有价值。除了数量之外,当前数据的真实性,多样性和传入数据的速度都是有差别的。
4. 资质王牌人才和经验
深入观察任何一个职位董事会,会看到许多企业对统计学、机器学习甚至数学博士学位的数据科学家的渴求。
数据科学领域,人才和经验同样重要。实际上,拥有多年从事经验的人可能会比刚毕业的高学历学生有更高的声望。我们并不是在引导您如何选择员工,在数据行业,通过优先考虑人才和经验,能为企业抓更多的机会。
5. 数据科学家会写代码
虽然有很多数据科学家也了解编程,知道如何编写和使用计算机语言。景观如此,这并不意味着他们就是编程方面的专家。本质上他们只关注一两种技能,其中最相关的就是数据科学和分析,编码可能只是他们的附加技能。
数据科学并不神奇
很多外界人士都神话了数据科学,或者至少是在一些方面盲目崇拜这种形式的科学。数学、统计和分析工具这些都是必备的,但是数据科学更多的是一门艺术。提取现代企业和组织需要的有用信息,这既需要技巧,也需要人才,更需要经验。虽然机器学习和预测工具可以替代这些,但不能根本解决底层的需求。仍然需要实际的数据科学家来完成大量的工作。
在实际实施之前谨记这些提示,才能确保进行您的研究是有意义的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29