
1.用party包构建决策树
以iris数据集为例。
用ctree()建立决策树,用predict()对新数据进行预测。
训练集与测试集划分:
[ruby] view plain copy
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
> set.seed(1234)
> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
> trainData <- iris[ind==1,]
> testData <- iris[ind==2,]
用默认参数来建立决策树:
[ruby] view plain copy
> library(party)
> myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> iris_ctree <- ctree(myFormula, data=trainData)
> # check the prediction
> table(predict(iris_ctree), trainData$Species)
setosa versicolor virginica
setosa 40 0 0
versicolor 0 37 3
virginica 0 1 31
输出规则并绘制已构建好的决策树以便查看。
[ruby] view plain copy
> print(iris_ctree)
Conditional inference tree with 4 terminal nodes
Response: Species
Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
Number of observations: 112
1) Petal.Length <= 1.9; criterion = 1, statistic = 104.643
2)* weights = 40
1) Petal.Length > 1.9
3) Petal.Width <= 1.7; criterion = 1, statistic = 48.939
4) Petal.Length <= 4.4; criterion = 0.974, statistic = 7.397
5)* weights = 21
4) Petal.Length > 4.4
6)* weights = 19
3) Petal.Width > 1.7
7)* weights = 32
> plot(iris_ctree)
> # 图略
[ruby] view plain copy
> plot(iris_ctree, type="simple")
[ruby] view plain copy
> #图略
用测试集对构建好的决策树进行测试:
[ruby] view plain copy
> # predict on test data
> testPred <- predict(iris_ctree, newdata = testData)
> table(testPred, testData$Species)
testPred setosa versicolor virginica
setosa 10 0 0
versicolor 0 12 2
virginica 0 0 14
几点值得注意的地方:
① ctree()不能很好地处理缺失值,含有缺失值的观测有时被划分到左子树,有时划到右子树,这是由缺失值的替代规则决定的。
② 训练集和测试集需出自同一个数据集,即它们的表结构、含有的变量要一致,无论决策树最终是否用到了全部的变量。
③ 如果训练集和测试集的分类变量的水平值不一致,对测试集的预测会识别。解决此问题的方法是根据测试集中的分类变量的水平值显式地设置训练数据。
2.用rpar包构建决策树
以bodyfat数据集为例。用rpart()构建决策树,允许选择具有最小预测误差的决策树,再使用predict()对新数据进行预测。
首先查看数据:
[ruby] view plain copy
> data("bodyfat", package = "TH.data")
> dim(bodyfat)
[1] 71 10
> attributes(bodyfat)
$names
[1] "age" "DEXfat" "waistcirc" "hipcirc" "elbowbreadth"
[6] "kneebreadth" "anthro3a" "anthro3b" "anthro3c" "anthro4"
$row.names
[1] "47" "48" "49" "50" "51" "52" "53" "54" "55" "56" "57" "58" "59" "60"
[15] "61" "62" "63" "64" "65" "66" "67" "68" "69" "70" "71" "72" "73" "74"
[29] "75" "76" "77" "78" "79" "80" "81" "82" "83" "84" "85" "86" "87" "88"
[43] "89" "90" "91" "92" "93" "94" "95" "96" "97" "98" "99" "100" "101" "102"
[57] "103" "104" "105" "106" "107" "108" "109" "110" "111" "112" "113" "114" "115" "116"
[71] "117"
$class
[1] "data.frame"
> bodyfat[1:5,]
age DEXfat waistcirc hipcirc elbowbreadth kneebreadth anthro3a anthro3b anthro3c
47 57 41.68 100.0 112.0 7.1 9.4 4.42 4.95 4.50
48 65 43.29 99.5 116.5 6.5 8.9 4.63 5.01 4.48
49 59 35.41 96.0 108.5 6.2 8.9 4.12 4.74 4.60
50 58 22.79 72.0 96.5 6.1 9.2 4.03 4.48 3.91
51 60 36.42 89.5 100.5 7.1 10.0 4.24 4.68 4.15
anthro4
47 6.13
48 6.37
49 5.82
50 5.66
51 5.91
训练集与测试集划分,和模型训练:
[ruby] view plain copy
> set.seed(1234)
> ind <- sample(2, nrow(bodyfat), replace=TRUE, prob=c(0.7, 0.3))
> bodyfat.train <- bodyfat[ind==1,]
> bodyfat.test <- bodyfat[ind==2,]
> # train a decision tree
> library(rpart)
> myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
> bodyfat_rpart <- rpart(myFormula, data = bodyfat.train,
+ control = rpart.control(minsplit = 10))
> attributes(bodyfat_rpart)
$names
[1] "frame" "where" "call"
[4] "terms" "cptable" "method"
[7] "parms" "control" "functions"
[10] "numresp" "splits" "variable.importance"
[13] "y" "ordered"
$xlevels
named list()
$class
[1] "rpart"
> print(bodyfat_rpart$cptable)
CP nsplit rel error xerror xstd
1 0.67272638 0 1.00000000 1.0194546 0.18724382
2 0.09390665 1 0.32727362 0.4415438 0.10853044
3 0.06037503 2 0.23336696 0.4271241 0.09362895
4 0.03420446 3 0.17299193 0.3842206 0.09030539
5 0.01708278 4 0.13878747 0.3038187 0.07295556
6 0.01695763 5 0.12170469 0.2739808 0.06599642
7 0.01007079 6 0.10474706 0.2693702 0.06613618
8 0.01000000 7 0.09467627 0.2695358 0.06620732
> print(bodyfat_rpart)
n= 56
node), split, n, deviance, yval
* denotes terminal node
1) root 56 7265.0290000 30.94589
2) waistcirc< 88.4 31 960.5381000 22.55645
4) hipcirc< 96.25 14 222.2648000 18.41143
8) age< 60.5 9 66.8809600 16.19222 *
9) age>=60.5 5 31.2769200 22.40600 *
5) hipcirc>=96.25 17 299.6470000 25.97000
10) waistcirc< 77.75 6 30.7345500 22.32500 *
11) waistcirc>=77.75 11 145.7148000 27.95818
22) hipcirc< 99.5 3 0.2568667 23.74667 *
23) hipcirc>=99.5 8 72.2933500 29.53750 *
3) waistcirc>=88.4 25 1417.1140000 41.34880
6) waistcirc< 104.75 18 330.5792000 38.09111
12) hipcirc< 109.9 9 68.9996200 34.37556 *
13) hipcirc>=109.9 9 13.0832000 41.80667 *
7) waistcirc>=104.75 7 404.3004000 49.72571 *
绘制决策树图形:
[ruby] view plain copy
> plot(bodyfat_rpart)
> text(bodyfat_rpart, use.n=T)
> #图略
选择具有最小预测误差的决策树:
[ruby] view plain copy
> opt <- which.min(bodyfat_rpart$cptable[,"xerror"])
> cp <- bodyfat_rpart$cptable[opt, "CP"]
> bodyfat_prune <- prune(bodyfat_rpart, cp = cp)
> print(bodyfat_prune)
n= 56
node), split, n, deviance, yval
* denotes terminal node
1) root 56 7265.02900 30.94589
2) waistcirc< 88.4 31 960.53810 22.55645
4) hipcirc< 96.25 14 222.26480 18.41143
8) age< 60.5 9 66.88096 16.19222 *
9) age>=60.5 5 31.27692 22.40600 *
5) hipcirc>=96.25 17 299.64700 25.97000
10) waistcirc< 77.75 6 30.73455 22.32500 *
11) waistcirc>=77.75 11 145.71480 27.95818 *
3) waistcirc>=88.4 25 1417.11400 41.34880
6) waistcirc< 104.75 18 330.57920 38.09111
12) hipcirc< 109.9 9 68.99962 34.37556 *
13) hipcirc>=109.9 9 13.08320 41.80667 *
7) waistcirc>=104.75 7 404.30040 49.72571 *
> plot(bodyfat_prune)
> text(bodyfat_prune, use.n=T)
> #图略
用决策树模型进行预测,并与实际值进行对比。图中abline()绘制了一条对角线。一个好的预测模型,绝大多数的点应该落在对角线上或者越接近对角线越好。
[ruby] view plain copy
> DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat.test)
> xlim <- range(bodyfat$DEXfat)
> plot(DEXfat_pred ~ DEXfat, data=bodyfat.test, xlab="Observed",
+ ylab="Predicted", ylim=xlim, xlim=xlim)
> abline(a=0, b=1)
[ruby] view plain copy
> #图略
3.随机森林
以iris数据集为例。
使用randomForest()存在两个限制:第一个是该函数不能处理带有缺失值的数据,要事先对缺失值进行处理;第二是分类属性的水平划分数量最大值为32,大于32的分类属性需要事先转换。
另一种是使用party包中的cforest(),该函数没有限定分类属性的水平划分数。
训练集和测试集划分:
[ruby] view plain copy
> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
> trainData <- iris[ind==1,]
> testData <- iris[ind==2,]
训练随机森林模型:
[ruby] view plain copy
> library(randomForest)
> rf <- randomForest(Species ~ ., data=trainData, ntree=100, proximity=TRUE)
> table(predict(rf), trainData$Species)
setosa versicolor virginica
setosa 36 0 0
versicolor 0 31 1
virginica 0 1 35
> print(rf)
Call:
randomForest(formula = Species ~ ., data = trainData, ntree = 100, proximity = TRUE)
Type of random forest: classification
Number of trees: 100
No. of variables tried at each split: 2
OOB estimate of error rate: 1.92%
Confusion matrix:
setosa versicolor virginica class.error
setosa 36 0 0 0.00000000
versicolor 0 31 1 0.03125000
virginica 0 1 35 0.02777778
> attributes(rf)
$names
[1] "call" "type" "predicted" "err.rate"
[5] "confusion" "votes" "oob.times" "classes"
[9] "importance" "importanceSD" "localImportance" "proximity"
[13] "ntree" "mtry" "forest" "y"
[17] "test" "inbag" "terms"
$class
[1] "randomForest.formula" "randomForest"
根据生成的随机森林中不同的树来绘制误差率:
[ruby] view plain copy
> plot(rf)
> #图略
查看变量重要性:
[ruby] view plain copy
> importance(rf)
MeanDecreaseGini
Sepal.Length 6.485090
Sepal.Width 1.380624
Petal.Length 32.498074
Petal.Width 28.250058
> varImpPlot(rf)
> #图略
最后使用测试集进行测试,用table()和margin()查看结果。图中数据点的边距为正确分类的比例减去被归到其他类别的最大比例。一般来说,边距为正数说明该数据点划分正确。
[ruby] view plain copy
> irisPred <- predict(rf, newdata=testData)
> table(irisPred, testData$Species)
irisPred setosa versicolor virginica
setosa 14 0 0
versicolor 0 17 3
virginica 0 1 11
> plot(margin(rf, testData$Species))
[ruby] view plain copy
> #图略
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10