京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.用party包构建决策树
以iris数据集为例。
用ctree()建立决策树,用predict()对新数据进行预测。
训练集与测试集划分:
[ruby] view plain copy
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
> set.seed(1234)
> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
> trainData <- iris[ind==1,]
> testData <- iris[ind==2,]
用默认参数来建立决策树:
[ruby] view plain copy
> library(party)
> myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> iris_ctree <- ctree(myFormula, data=trainData)
> # check the prediction
> table(predict(iris_ctree), trainData$Species)
setosa versicolor virginica
setosa 40 0 0
versicolor 0 37 3
virginica 0 1 31
输出规则并绘制已构建好的决策树以便查看。
[ruby] view plain copy
> print(iris_ctree)
Conditional inference tree with 4 terminal nodes
Response: Species
Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
Number of observations: 112
1) Petal.Length <= 1.9; criterion = 1, statistic = 104.643
2)* weights = 40
1) Petal.Length > 1.9
3) Petal.Width <= 1.7; criterion = 1, statistic = 48.939
4) Petal.Length <= 4.4; criterion = 0.974, statistic = 7.397
5)* weights = 21
4) Petal.Length > 4.4
6)* weights = 19
3) Petal.Width > 1.7
7)* weights = 32
> plot(iris_ctree)
> # 图略
[ruby] view plain copy
> plot(iris_ctree, type="simple")
[ruby] view plain copy
> #图略
用测试集对构建好的决策树进行测试:
[ruby] view plain copy
> # predict on test data
> testPred <- predict(iris_ctree, newdata = testData)
> table(testPred, testData$Species)
testPred setosa versicolor virginica
setosa 10 0 0
versicolor 0 12 2
virginica 0 0 14
几点值得注意的地方:
① ctree()不能很好地处理缺失值,含有缺失值的观测有时被划分到左子树,有时划到右子树,这是由缺失值的替代规则决定的。
② 训练集和测试集需出自同一个数据集,即它们的表结构、含有的变量要一致,无论决策树最终是否用到了全部的变量。
③ 如果训练集和测试集的分类变量的水平值不一致,对测试集的预测会识别。解决此问题的方法是根据测试集中的分类变量的水平值显式地设置训练数据。
2.用rpar包构建决策树
以bodyfat数据集为例。用rpart()构建决策树,允许选择具有最小预测误差的决策树,再使用predict()对新数据进行预测。
首先查看数据:
[ruby] view plain copy
> data("bodyfat", package = "TH.data")
> dim(bodyfat)
[1] 71 10
> attributes(bodyfat)
$names
[1] "age" "DEXfat" "waistcirc" "hipcirc" "elbowbreadth"
[6] "kneebreadth" "anthro3a" "anthro3b" "anthro3c" "anthro4"
$row.names
[1] "47" "48" "49" "50" "51" "52" "53" "54" "55" "56" "57" "58" "59" "60"
[15] "61" "62" "63" "64" "65" "66" "67" "68" "69" "70" "71" "72" "73" "74"
[29] "75" "76" "77" "78" "79" "80" "81" "82" "83" "84" "85" "86" "87" "88"
[43] "89" "90" "91" "92" "93" "94" "95" "96" "97" "98" "99" "100" "101" "102"
[57] "103" "104" "105" "106" "107" "108" "109" "110" "111" "112" "113" "114" "115" "116"
[71] "117"
$class
[1] "data.frame"
> bodyfat[1:5,]
age DEXfat waistcirc hipcirc elbowbreadth kneebreadth anthro3a anthro3b anthro3c
47 57 41.68 100.0 112.0 7.1 9.4 4.42 4.95 4.50
48 65 43.29 99.5 116.5 6.5 8.9 4.63 5.01 4.48
49 59 35.41 96.0 108.5 6.2 8.9 4.12 4.74 4.60
50 58 22.79 72.0 96.5 6.1 9.2 4.03 4.48 3.91
51 60 36.42 89.5 100.5 7.1 10.0 4.24 4.68 4.15
anthro4
47 6.13
48 6.37
49 5.82
50 5.66
51 5.91
训练集与测试集划分,和模型训练:
[ruby] view plain copy
> set.seed(1234)
> ind <- sample(2, nrow(bodyfat), replace=TRUE, prob=c(0.7, 0.3))
> bodyfat.train <- bodyfat[ind==1,]
> bodyfat.test <- bodyfat[ind==2,]
> # train a decision tree
> library(rpart)
> myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
> bodyfat_rpart <- rpart(myFormula, data = bodyfat.train,
+ control = rpart.control(minsplit = 10))
> attributes(bodyfat_rpart)
$names
[1] "frame" "where" "call"
[4] "terms" "cptable" "method"
[7] "parms" "control" "functions"
[10] "numresp" "splits" "variable.importance"
[13] "y" "ordered"
$xlevels
named list()
$class
[1] "rpart"
> print(bodyfat_rpart$cptable)
CP nsplit rel error xerror xstd
1 0.67272638 0 1.00000000 1.0194546 0.18724382
2 0.09390665 1 0.32727362 0.4415438 0.10853044
3 0.06037503 2 0.23336696 0.4271241 0.09362895
4 0.03420446 3 0.17299193 0.3842206 0.09030539
5 0.01708278 4 0.13878747 0.3038187 0.07295556
6 0.01695763 5 0.12170469 0.2739808 0.06599642
7 0.01007079 6 0.10474706 0.2693702 0.06613618
8 0.01000000 7 0.09467627 0.2695358 0.06620732
> print(bodyfat_rpart)
n= 56
node), split, n, deviance, yval
* denotes terminal node
1) root 56 7265.0290000 30.94589
2) waistcirc< 88.4 31 960.5381000 22.55645
4) hipcirc< 96.25 14 222.2648000 18.41143
8) age< 60.5 9 66.8809600 16.19222 *
9) age>=60.5 5 31.2769200 22.40600 *
5) hipcirc>=96.25 17 299.6470000 25.97000
10) waistcirc< 77.75 6 30.7345500 22.32500 *
11) waistcirc>=77.75 11 145.7148000 27.95818
22) hipcirc< 99.5 3 0.2568667 23.74667 *
23) hipcirc>=99.5 8 72.2933500 29.53750 *
3) waistcirc>=88.4 25 1417.1140000 41.34880
6) waistcirc< 104.75 18 330.5792000 38.09111
12) hipcirc< 109.9 9 68.9996200 34.37556 *
13) hipcirc>=109.9 9 13.0832000 41.80667 *
7) waistcirc>=104.75 7 404.3004000 49.72571 *
绘制决策树图形:
[ruby] view plain copy
> plot(bodyfat_rpart)
> text(bodyfat_rpart, use.n=T)
> #图略
选择具有最小预测误差的决策树:
[ruby] view plain copy
> opt <- which.min(bodyfat_rpart$cptable[,"xerror"])
> cp <- bodyfat_rpart$cptable[opt, "CP"]
> bodyfat_prune <- prune(bodyfat_rpart, cp = cp)
> print(bodyfat_prune)
n= 56
node), split, n, deviance, yval
* denotes terminal node
1) root 56 7265.02900 30.94589
2) waistcirc< 88.4 31 960.53810 22.55645
4) hipcirc< 96.25 14 222.26480 18.41143
8) age< 60.5 9 66.88096 16.19222 *
9) age>=60.5 5 31.27692 22.40600 *
5) hipcirc>=96.25 17 299.64700 25.97000
10) waistcirc< 77.75 6 30.73455 22.32500 *
11) waistcirc>=77.75 11 145.71480 27.95818 *
3) waistcirc>=88.4 25 1417.11400 41.34880
6) waistcirc< 104.75 18 330.57920 38.09111
12) hipcirc< 109.9 9 68.99962 34.37556 *
13) hipcirc>=109.9 9 13.08320 41.80667 *
7) waistcirc>=104.75 7 404.30040 49.72571 *
> plot(bodyfat_prune)
> text(bodyfat_prune, use.n=T)
> #图略
用决策树模型进行预测,并与实际值进行对比。图中abline()绘制了一条对角线。一个好的预测模型,绝大多数的点应该落在对角线上或者越接近对角线越好。
[ruby] view plain copy
> DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat.test)
> xlim <- range(bodyfat$DEXfat)
> plot(DEXfat_pred ~ DEXfat, data=bodyfat.test, xlab="Observed",
+ ylab="Predicted", ylim=xlim, xlim=xlim)
> abline(a=0, b=1)
[ruby] view plain copy
> #图略
3.随机森林
以iris数据集为例。
使用randomForest()存在两个限制:第一个是该函数不能处理带有缺失值的数据,要事先对缺失值进行处理;第二是分类属性的水平划分数量最大值为32,大于32的分类属性需要事先转换。
另一种是使用party包中的cforest(),该函数没有限定分类属性的水平划分数。
训练集和测试集划分:
[ruby] view plain copy
> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
> trainData <- iris[ind==1,]
> testData <- iris[ind==2,]
训练随机森林模型:
[ruby] view plain copy
> library(randomForest)
> rf <- randomForest(Species ~ ., data=trainData, ntree=100, proximity=TRUE)
> table(predict(rf), trainData$Species)
setosa versicolor virginica
setosa 36 0 0
versicolor 0 31 1
virginica 0 1 35
> print(rf)
Call:
randomForest(formula = Species ~ ., data = trainData, ntree = 100, proximity = TRUE)
Type of random forest: classification
Number of trees: 100
No. of variables tried at each split: 2
OOB estimate of error rate: 1.92%
Confusion matrix:
setosa versicolor virginica class.error
setosa 36 0 0 0.00000000
versicolor 0 31 1 0.03125000
virginica 0 1 35 0.02777778
> attributes(rf)
$names
[1] "call" "type" "predicted" "err.rate"
[5] "confusion" "votes" "oob.times" "classes"
[9] "importance" "importanceSD" "localImportance" "proximity"
[13] "ntree" "mtry" "forest" "y"
[17] "test" "inbag" "terms"
$class
[1] "randomForest.formula" "randomForest"
根据生成的随机森林中不同的树来绘制误差率:
[ruby] view plain copy
> plot(rf)
> #图略
查看变量重要性:
[ruby] view plain copy
> importance(rf)
MeanDecreaseGini
Sepal.Length 6.485090
Sepal.Width 1.380624
Petal.Length 32.498074
Petal.Width 28.250058
> varImpPlot(rf)
> #图略
最后使用测试集进行测试,用table()和margin()查看结果。图中数据点的边距为正确分类的比例减去被归到其他类别的最大比例。一般来说,边距为正数说明该数据点划分正确。
[ruby] view plain copy
> irisPred <- predict(rf, newdata=testData)
> table(irisPred, testData$Species)
irisPred setosa versicolor virginica
setosa 14 0 0
versicolor 0 17 3
virginica 0 1 11
> plot(margin(rf, testData$Species))
[ruby] view plain copy
> #图略
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31