
python使用xlrd与xlwt对excel的读写和格式设定
python操作excel主要用到xlrd和xlwt这两个库,即xlrd是读excel,xlwt是写excel的库。本文主要介绍了python使用xlrd与xlwt对excel的读写和格式设定,下面话不多说,来看看详细的实现过程。
脚本里先注明# -*- coding:utf-8 -*-
1. 确认源excel存在并用xlrd读取第一个表单中每行的第一列的数值。
import xlrd, xlwt
import os
assert os.path.isfile('source_excel.xls'),"There is no timesheet exist. Exit..."
book = xlrd.open_workbook('source_excel.xls')
sheet=book.sheet_by_index(0)
for rows in range(sheet.nrows):
value = sheet.cell(rows,0).value
2. 用xlwt准备将从源表中读出的数据写入新表,并设定行宽和表格的格式。合并单元格2行8列后写入标题,并设定格式为之前定义的tittle_style。
使用的是write_merge。
wbk = xlwt.Workbook(encoding='utf-8')
sheet_w = wbk.add_sheet('write_after', cell_overwrite_ok=True)
sheet_w.col(3).width = 5000
tittle_style = xlwt.easyxf('font: height 300, name SimSun, colour_index red, bold on; align: wrap on, vert centre, horiz center;')
sheet_w.write_merge(0,2,0,8,u'这是标题',tittle_style)
3. 当函数中要用到全局变量时,注意加global。否则会出现UnboundLocalError:local variable'xxx' referenced before assignment.
check_num = 0
def check_data(sheet):
global check_num
check_num=check_num+1
4. 写入日期和带格式的数值。原来从sheet中读取的日期格式为2014/4/10,处理后只保留日期并做成数组用逗号分隔后写入新的excel。
date_arr = []
date=sheet.cell(row,2).value.rsplit('/')[-1]
if date not in date_arr:
date_arr.append(date)
sheet_w.write_merge(row2,row2,6,6,date_num, normal_style)
sheet_w.write_merge(row2,row2,7,7,','.join(date_arr), normal_style)
5. 当从excel中读取的日期格式为xldate时,就需要使用xlrd的xldate_as_tuple来处理为date格式。先判断表格的ctype确实是xldate才能开始操作,否则会报错。之后date格式可以使用strftime来转化为string。如:date.strftime("%Y-%m-%d-%H")
from datetime import date,datetime
from xlrd import xldate_as_tuple
if (sheet.cell(rows,3).ctype == 3):
num=num+1
date_value = xldate_as_tuple(sheet.cell_value(rows,3),book.datemode)
date_tmp = date(*date_value[:3]).strftime("%d")
6. 最后保存新写的表
wbk.save('new_excel.xls')
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01