
电商企业怎样用好大数据
大数据正在促生新的蓝海,催生新的经济增长点,正在成为政府和企业竞争的新焦点。2012年,瑞士达沃斯论坛发布《大数据,大影响》报告,称“数据已经成为一种新的经济资产类别,就像货币或黄金一样”。2012年,美国政府启动“大数据研究和发展计划”,将大数据上升到了国家战略层面。对于企业来说,数据正在取代人才成为企业的核心竞争力。
在众多领域中,显然电商企业比传统零售企业在这方面会更有优势,因为电商企业本身就是通过数据平台为用户提供零售服务的。那么,电商企业如何应用好这一优势?
电商企业具备先天优势
当前,我国电子商务正处于快速发展期。以阿里巴巴为例,2012年,淘宝和天猫成交量之和超过一万亿元。根据国家统计局数据,2012年全国社会消费品零售总额为20.17万亿元,一万亿元相当于其总量的4.8%。我国电子商务井喷式发展的背后是消费者数据的几何级增长,电子商务龙头企业也积极部署、探索和挖掘大数据相关应用。
——电商企业通过大数据应用创新商业模式
大数据的重要趋势就是数据服务的变革,把人分成很多群体,对每个群体甚至每个人提供针对性的服务。消费数据量的增加为电商企业提供了精确把握用户群体和个体网络行为模式的基础。电商企业通过大数据应用,可以进行个人化、个性化、精确化和智能化广告推送与推广服务的探索,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更多更好的增加用户黏性、开发新产品和新服务、降低运营成本的方法与途径。
实际上,国外传统零售巨头早已开始大数据的应用和实践。Tesco是全球利润第二大零售商,其从会员卡的用户购买记录中,充分了解用户的行为,并基于此进行一系列的业务活动,例如通过邮件或信件寄给用户的促销可以变得更个性化,店内的商家商品及促销也可以根据周围人群的喜好、消费时段来更加有针对性,从而提高货品的流通。这样的做法为Tesco获得了丰厚的回报,仅在市场宣传一项,就能帮助其每年节省3.5亿英镑的费用。
从国内来看,我国电商企业已逐步认识到大数据应用对于电商发展的重要性。以凡客诚品为例,经过近几年的高速发展,凡客每年的销售量成倍增长,库存问题逐渐成为制约其发展的主要因素。2011年,凡客成立了数据中心,针对企业经营数据,包括库存、进货周期、周转、订单等,研究分析新产品的上架与新用户增长的关系,每上线一个新产品与它能够带来的用户二次购买的关系等,开展大数据应用实践。凡客的高库存问题目前已得到了缓解,库存周转周期由100天下降为50天~30天,有效降低了运营成本。
——电商企业通过大数据应用推动差异化竞争
当前,我国电子商务发展面临的两大突出问题是成本和同质化竞争。而大数据时代的到来将为其发展和竞争提供新的出路,包括具体产品和服务形式,通过个性化创新提升企业竞争力。
阿里巴巴通过对旗下的淘宝、天猫、阿里云、支付宝、万网等业务平台进行资源整合,形成了强大的电子商务客户群及消费者行为的全产业链信息,造就了独一无二的数据处理能力,这是目前其他电子商务公司无法模仿与跟随的。同时,也将电子商务的竞争从简单的价格战上升了一个层次,形成了差异化竞争。目前,淘宝已形成的数据平台产品,包括数据魔方、量子恒道、超级分析、金牌统计、云镜数据等100余款,功能包括店铺基础经营分析、商品分析、营销效果分析、买家分析、订单分析、供应链分析、行业分析、财务分析和预测分析等。
此外,电商企业通过大数据应用积极开拓发展新蓝海——互联网金融业务。目前阿里、京东、苏宁三大主流电商企业已相继试水。除“阿里小贷”模式比较成功之外,“京东模式”也渐出效果。2012年,京东通过与中国银行合作,推出“供应链金融服务”,供应商凭借其在京东的订单、入库单等向京东提出融资申请,核准后递交银行,再由银行给予放款。此服务可以帮助京东供应商大幅度缩短账期,资金回报率由原来的60%左右提高到226%。
警惕隐私风险
虽然电子商务企业已经走在大数据时代的前列,但在开始规划大数据美好蓝图的同时也要警惕其面临的挑战和风险。
企业信息化投资将规模化发展。电商企业内部的经营交易信息,包括商品、物流信息,以及用户的社交信息、位置信息等将构成企业大数据的主要来源。其信息量远远超越了现有企业IT架构和基础设施的承载能力,其实时性要求大大超越现有的计算能力。此外,电商企业还将面临数据孤岛、数据质量、数据格局等数据治理问题。要想依靠大数据获益,我国电商企业必将进行新一轮的信息化投资和建设。
相关管理政策尚不明确。大数据时代下,云计算必将成为电商企业选择的业务模式,其本质是数据处理技术。数据是资产,云为数据资产提供了保管、访问的场所和渠道。云计算所提供的服务,既包括软件服务和应用平台服务,又包括基础设施服务,但目前我国针对云计算服务的管理政策和技术标准尚未明确。
数据安全与隐私问题突出。一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录,面临的数据泄露风险将会增大。电商企业既要防止数据在云上丢掉,也要防止数据在端上被窃取和篡改。另一方面,一些敏感数据的所有权和使用权还没有明确的界定,很多基于大数据的分析都未考虑到其中涉及的个人隐私问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15