京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网之道,看电商的数据化管理方案
关于数据化管理。我们可以将该模块的数据工作分成两个部分,一是通过数据来辅助日常工作,让日常工作中的选择判断更加规范,这是用数据来做事的。另一个是通过数据来评价工作业绩,让针对相关工作的管理更加规范,这是用数据来管理的。我们先看做事的,商品在零售电商企业中一般都走过下面的几个过程:
商品从采购开始到最终卖出去,按照商品的流程走下去,但是商品的售卖情况、退货情况又反过来影响商品的采购选择。在每个节点是有不同的事情要做(运输这个节点,很多情况运输是由供应商来负责的,所以可能零售商没什么事需要做),本篇先针对采购这一个模块来讨论。
关于采购所要做的事:
选择商品品类、规划品类结构,对于大部分企业来说,商品品类的选择直接决定了企业的零售战略了,并不需要在采购这一阶段来决定。
选择品类中的商品品牌,这个是采购决策中重要的一部分,这个工作也可以拆分成两个内容,引进品牌与淘汰品牌。
选择供应商,同一个品牌也可能会有多个渠道经销商,选择合适的供应商也是采购的重点工作。
而我们如何通过数据来让以上的工作变的更容易,下面我举两个例子。
选择商品品牌,一个是引进一个是淘汰:如果理论上看,引进一个商品品牌需要考虑该品牌的熟悉度、质量、消费者购买欲、品牌预期和独特性等等之后进行判断,但上述内容很难量化,判断参考难度大。而其实,上面的几项总之是可以通过销售情况来体现一下,可以通过商品的销售情况来判断该商品是否值得引进。
上图做了个简单的举例,我们通过另一个参考的数据集来寻找销售情况较好的商品,通过查看商品的毛利率、销量等信息来判断这个商品是否值得引进。根据实际的情况,该表可以有更多的变化,不同的对比集、不同的业态可以有更多的指标来判断,这个图只提供一个简单的思路。(不要问我对比集数据怎么获取,可选择的对比集很多,数据获取的方法也很多)
除了引进好的商品外,也需要剔除掉垃圾品牌,这一块就更简单了,选择品类拉出改品类中各品牌商品的库存、销售情况,计算库存可维持销售天数,就可以得出商品的畅滞销情况,并依此判断商品是否需要剔除。
或许有人会说,不同商品不能在一起比较,有的品牌月售1件就厉害了,有的卖10件也是滞销,这样做考虑不全面。我要说的是,人来用来干嘛呢,一共10步路程,数据完成7步,剩下的还是交给人。数据可以让人们的判断有更全面的依据,做出更合理的判断,而不是直接做出判断结果。我信一句话:如果你想把事情做到完美,那么多半是做不成的。这里做数据分析也是一样,平衡好数据和人的关系,对数据也不要想太多。
在完成品牌的选择之后,可能面临着供应商的选择,点击品名来直接调出该商品的供应商信息,列出供应商相关的指标数据,例如批次进价、售价、库存、销售额、到货及时率等。
上面介绍完关于采购日常工作中的数据应用,我们再来看管理。
管理的目的,是通过对一段时间工作业绩的回顾和分析,发现过程中的问题,促使相关的责任人更好的做事。其方式也一般是对采购相关指标进行展示,或者是根据指标数据进行排名、对比,以此来驱动相关负责人更好的完成工作。更复杂点的也就是整体到个体到节点的全面监控,通过数据的可视化展示,来达到更直观的体现效果。
针对采购模块,我们可以将指标分成两部分,一是过程指标,二是结果指标。
过程指标:采购频率、采购费用、扩展供应商数量、新品引进率、商品淘汰率、新品到位率、采购品牌匹配度、价格匹配度、型号匹配度。
结果指标:采购商品销售额、采购商品gmroi、商品毛利率、销售存货比率、商品采销率。。
通过上面我们看出,体现采购价值的结果指标,都是需要从商品的销售结果中来体现。所以商品分析可以作为一个综合的模块,所有的目的都是为了商品卖的更好,带来更高的利润,无论是采购、库存、销售都是为了这一目标,所以我这里也不针对单独的采购模块做报表demo了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22