京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网之道,看电商的数据化管理方案
关于数据化管理。我们可以将该模块的数据工作分成两个部分,一是通过数据来辅助日常工作,让日常工作中的选择判断更加规范,这是用数据来做事的。另一个是通过数据来评价工作业绩,让针对相关工作的管理更加规范,这是用数据来管理的。我们先看做事的,商品在零售电商企业中一般都走过下面的几个过程:
商品从采购开始到最终卖出去,按照商品的流程走下去,但是商品的售卖情况、退货情况又反过来影响商品的采购选择。在每个节点是有不同的事情要做(运输这个节点,很多情况运输是由供应商来负责的,所以可能零售商没什么事需要做),本篇先针对采购这一个模块来讨论。
关于采购所要做的事:
选择商品品类、规划品类结构,对于大部分企业来说,商品品类的选择直接决定了企业的零售战略了,并不需要在采购这一阶段来决定。
选择品类中的商品品牌,这个是采购决策中重要的一部分,这个工作也可以拆分成两个内容,引进品牌与淘汰品牌。
选择供应商,同一个品牌也可能会有多个渠道经销商,选择合适的供应商也是采购的重点工作。
而我们如何通过数据来让以上的工作变的更容易,下面我举两个例子。
选择商品品牌,一个是引进一个是淘汰:如果理论上看,引进一个商品品牌需要考虑该品牌的熟悉度、质量、消费者购买欲、品牌预期和独特性等等之后进行判断,但上述内容很难量化,判断参考难度大。而其实,上面的几项总之是可以通过销售情况来体现一下,可以通过商品的销售情况来判断该商品是否值得引进。
上图做了个简单的举例,我们通过另一个参考的数据集来寻找销售情况较好的商品,通过查看商品的毛利率、销量等信息来判断这个商品是否值得引进。根据实际的情况,该表可以有更多的变化,不同的对比集、不同的业态可以有更多的指标来判断,这个图只提供一个简单的思路。(不要问我对比集数据怎么获取,可选择的对比集很多,数据获取的方法也很多)
除了引进好的商品外,也需要剔除掉垃圾品牌,这一块就更简单了,选择品类拉出改品类中各品牌商品的库存、销售情况,计算库存可维持销售天数,就可以得出商品的畅滞销情况,并依此判断商品是否需要剔除。
或许有人会说,不同商品不能在一起比较,有的品牌月售1件就厉害了,有的卖10件也是滞销,这样做考虑不全面。我要说的是,人来用来干嘛呢,一共10步路程,数据完成7步,剩下的还是交给人。数据可以让人们的判断有更全面的依据,做出更合理的判断,而不是直接做出判断结果。我信一句话:如果你想把事情做到完美,那么多半是做不成的。这里做数据分析也是一样,平衡好数据和人的关系,对数据也不要想太多。
在完成品牌的选择之后,可能面临着供应商的选择,点击品名来直接调出该商品的供应商信息,列出供应商相关的指标数据,例如批次进价、售价、库存、销售额、到货及时率等。
上面介绍完关于采购日常工作中的数据应用,我们再来看管理。
管理的目的,是通过对一段时间工作业绩的回顾和分析,发现过程中的问题,促使相关的责任人更好的做事。其方式也一般是对采购相关指标进行展示,或者是根据指标数据进行排名、对比,以此来驱动相关负责人更好的完成工作。更复杂点的也就是整体到个体到节点的全面监控,通过数据的可视化展示,来达到更直观的体现效果。
针对采购模块,我们可以将指标分成两部分,一是过程指标,二是结果指标。
过程指标:采购频率、采购费用、扩展供应商数量、新品引进率、商品淘汰率、新品到位率、采购品牌匹配度、价格匹配度、型号匹配度。
结果指标:采购商品销售额、采购商品gmroi、商品毛利率、销售存货比率、商品采销率。。
通过上面我们看出,体现采购价值的结果指标,都是需要从商品的销售结果中来体现。所以商品分析可以作为一个综合的模块,所有的目的都是为了商品卖的更好,带来更高的利润,无论是采购、库存、销售都是为了这一目标,所以我这里也不针对单独的采购模块做报表demo了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01