京公网安备 11010802034615号
经营许可证编号:京B2-20210330
下面小编就为大家分享一篇利用python将json数据转换为csv格式的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
假设.json文件中存储的数据为:
{"type": "Point", "link": "http://www.dianping.com/newhotel/22416995", "coordinates": [116.37256372996957, 40.39798447055443], "category": "经济型", "name": "北京荷塘山庄", "count": "278", "address": "北京市怀柔区黄花城村安四路", "price": "380"}
{"type": "Point", "link": "http://www.dianping.com/newhotel/19717653", "coordinates": [116.56881588256466, 40.43310967948417], "category": "经济型", "name": "慕田峪长城鱼师傅乡村酒店", "count": "89", "address": "北京市怀柔区渤海镇苇店村(慕田峪长城下3公里处,近怀黄路)", "price": "258"}
{"type": "Point", "link": "http://www.dianping.com/newhotel/58365289", "coordinates": [116.62874974822378, 40.45610264855833], "category": "经济型", "name": "北京蜜桃儿亲子客栈", "count": "119", "address": "北京市怀柔区神堂峪风景区下官地11号", "price": "549"}
现在需要将上面的这些数据存为csv格式,其中字典的keys为csv中的属性名称,字典的values为csv中属性对应的值。
如果只需要按照json的keys来生成csv,那么操作比较简单,直接按照下面的方法即可:
#-*-coding:utf-8-*-
import csv
import json
import sys
import codecs
def trans(path):
jsonData = codecs.open(path+'.json', 'r', 'utf-8')
# csvfile = open(path+'.csv', 'w') # 此处这样写会导致写出来的文件会有空行
# csvfile = open(path+'.csv', 'wb') # python2下
csvfile = open(path+'.csv', 'w', newline='') # python3下
writer = csv.writer(csvfile, delimiter='\t')
flag = True
for line in jsonData:
dic = json.loads(line[0:-1])
if flag:
# 获取属性列表
keys = list(dic.keys())
print (keys)
writer.writerow(keys) # 将属性列表写入csv中
flag = False
else:
# 读取json数据的每一行,将values数据一次一行的写入csv中
writer.writerow(list(dic.values()))
jsonData.close()
csvfile.close()
if __name__ == '__main__':
path=str(sys.argv[1]) # 获取path参数
print (path)
trans(path)
在python3下运行,命令行输入
python C:\Users\MaMQ\Documents\jsonToCsv.py C:\Users\MaMQ\Documents\data\geoFood
其中第三个参数为需要转换的文件的路径和其名称,将其后缀删除。运行文件后即可得到转换后的csv文件。
如果需要对json文件中每个字典的key字段进行修改,比如需要将上面dict中的coordinate中的经纬度数据取出来存为x、y数据,则可以按照下面的方法(此方法还可以调整每个属性显示的顺序,效果更好一点):
import csv
import json
import sys
import codecs
def trans(path):
jsonData = codecs.open(path+'.json', 'r', 'utf-8')
# csvfile = open(path+'.csv', 'w') # 此处这样写会导致写出来的文件会有空行
# csvfile = open(path+'.csv', 'wb') # python2下
csvfile = open(path+'.csv', 'w', newline='') # python3下
writer = csv.writer(csvfile, delimiter='\t')
keys=['id', 'name', 'category', 'price', 'count', 'type', 'address', 'link', 'x', 'y']
writer.writerow(keys)
i = 1
for dic in jsonData:
dic = json.loads(dic[0:-1])
x = dic['coordinates'][0]
y = dic['coordinates'][1]
writer.writerow([str(i),dic['name'],dic['category'],dic['price'],dic['count'],dic['type'],dic['address'],dic['link'],x,y])
i += 1
jsonData.close()
csvfile.close()
if __name__ == '__main__':
path = str(sys.argv[1])
print (path)
trans(path)
运行方法同上。
json文件是我在大众点评抓取的数据,存储格式为utf-8。建议使用codecs包来读取json数据,可指定编码方式。
jsonData = codecs.open(path + '.json', 'r', encoding='utf-8')
以上这篇利用python将json数据转换为csv格式的方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22