京公网安备 11010802034615号
经营许可证编号:京B2-20210330
下面小编就为大家分享一篇利用python将json数据转换为csv格式的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
假设.json文件中存储的数据为:
{"type": "Point", "link": "http://www.dianping.com/newhotel/22416995", "coordinates": [116.37256372996957, 40.39798447055443], "category": "经济型", "name": "北京荷塘山庄", "count": "278", "address": "北京市怀柔区黄花城村安四路", "price": "380"}
{"type": "Point", "link": "http://www.dianping.com/newhotel/19717653", "coordinates": [116.56881588256466, 40.43310967948417], "category": "经济型", "name": "慕田峪长城鱼师傅乡村酒店", "count": "89", "address": "北京市怀柔区渤海镇苇店村(慕田峪长城下3公里处,近怀黄路)", "price": "258"}
{"type": "Point", "link": "http://www.dianping.com/newhotel/58365289", "coordinates": [116.62874974822378, 40.45610264855833], "category": "经济型", "name": "北京蜜桃儿亲子客栈", "count": "119", "address": "北京市怀柔区神堂峪风景区下官地11号", "price": "549"}
现在需要将上面的这些数据存为csv格式,其中字典的keys为csv中的属性名称,字典的values为csv中属性对应的值。
如果只需要按照json的keys来生成csv,那么操作比较简单,直接按照下面的方法即可:
#-*-coding:utf-8-*-
import csv
import json
import sys
import codecs
def trans(path):
jsonData = codecs.open(path+'.json', 'r', 'utf-8')
# csvfile = open(path+'.csv', 'w') # 此处这样写会导致写出来的文件会有空行
# csvfile = open(path+'.csv', 'wb') # python2下
csvfile = open(path+'.csv', 'w', newline='') # python3下
writer = csv.writer(csvfile, delimiter='\t')
flag = True
for line in jsonData:
dic = json.loads(line[0:-1])
if flag:
# 获取属性列表
keys = list(dic.keys())
print (keys)
writer.writerow(keys) # 将属性列表写入csv中
flag = False
else:
# 读取json数据的每一行,将values数据一次一行的写入csv中
writer.writerow(list(dic.values()))
jsonData.close()
csvfile.close()
if __name__ == '__main__':
path=str(sys.argv[1]) # 获取path参数
print (path)
trans(path)
在python3下运行,命令行输入
python C:\Users\MaMQ\Documents\jsonToCsv.py C:\Users\MaMQ\Documents\data\geoFood
其中第三个参数为需要转换的文件的路径和其名称,将其后缀删除。运行文件后即可得到转换后的csv文件。
如果需要对json文件中每个字典的key字段进行修改,比如需要将上面dict中的coordinate中的经纬度数据取出来存为x、y数据,则可以按照下面的方法(此方法还可以调整每个属性显示的顺序,效果更好一点):
import csv
import json
import sys
import codecs
def trans(path):
jsonData = codecs.open(path+'.json', 'r', 'utf-8')
# csvfile = open(path+'.csv', 'w') # 此处这样写会导致写出来的文件会有空行
# csvfile = open(path+'.csv', 'wb') # python2下
csvfile = open(path+'.csv', 'w', newline='') # python3下
writer = csv.writer(csvfile, delimiter='\t')
keys=['id', 'name', 'category', 'price', 'count', 'type', 'address', 'link', 'x', 'y']
writer.writerow(keys)
i = 1
for dic in jsonData:
dic = json.loads(dic[0:-1])
x = dic['coordinates'][0]
y = dic['coordinates'][1]
writer.writerow([str(i),dic['name'],dic['category'],dic['price'],dic['count'],dic['type'],dic['address'],dic['link'],x,y])
i += 1
jsonData.close()
csvfile.close()
if __name__ == '__main__':
path = str(sys.argv[1])
print (path)
trans(path)
运行方法同上。
json文件是我在大众点评抓取的数据,存储格式为utf-8。建议使用codecs包来读取json数据,可指定编码方式。
jsonData = codecs.open(path + '.json', 'r', encoding='utf-8')
以上这篇利用python将json数据转换为csv格式的方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01