京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python互斥锁、加锁、同步机制、异步通信知识总结
某个线程要共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进入写入操作,从而保证了多线程情况下数据的正确性。
采用f_flag的方法效率低
创建锁
mutex=threading.Lock()
锁定
mutex.acquire([blocking])#里面可以加blocking(等待的时间)或者不加,不加就会一直等待(堵塞)
释放
mutex.release()
import threading
from threading import Thread
from threading import Lock
import time
thnum=0
#两个线程都在抢着对这个锁进行上锁,如果有一方成功上锁,那么导致另外一方会堵塞(一直等待),到这个锁被解开为之
class MyThread(threading.Thread):
def run(self):
mutex.acquire()
for i in range(10000):
global thnum
thnum+=1
print(thnum)
mutex.release()
def test():
global thnum
mutex.acquire() #等待可以上锁,通知而不是轮训,没有占用CPU
for i in range(10000):
thnum+=1
print(thnum)
mutex.release()#解锁
mutex=Lock()
if __name__=='__main__':
t=MyThread()
t.start()
#创建一把互斥锁,默认是没有上锁的
thn=Thread(target=test)
thn.start()
'''''
10000
20000
'''
只要一上锁,由多任务变为单任务,相当于只有一个线程在运行。
下面的代码相对上面加锁的时间变短了
import threading
from threading import Thread
from threading import Lock
import time
thnum=0
#两个线程都在抢着对这个锁进行上锁,如果有一方成功上锁,那么导致另外一方会堵塞(一直等待),到这个锁被解开为之
class MyThread(threading.Thread):
def run(self):
for i in range(10000):
mutex.acquire()
global thnum
thnum+=1
mutex.release()#释放后,都开始抢,这样上锁的时间变短
print(thnum)
def test():
global thnum
for i in range(10000):
mutex.acquire()
thnum+=1
mutex.release()#解锁
print(thnum)
mutex=Lock()
if __name__=='__main__':
t=MyThread()
t.start()
#创建一把互斥锁,默认是没有上锁的
thn=Thread(target=test)
thn.start()
'''''
10000
20000
'''
只有必须加锁的地方才加锁
同步:按照预定的先后顺序执行
一个运行完后,释放下一个,下一个锁定后运行,再释放下一个,下一个锁定后,运行后释放下一个..... 释放第一个
异步:
#异步的实现
from multiprocessing import Pool
import time
import os
#getpid()获取当前进程的进程号
#getppid()获取当前进程的父进程号
def test():#子进程
print("----进程池中的进程-----pid=%d,ppid=%d --"%(os.getpid(),os.getppid()))
for i in range(3):
print("-----%d----"%i)
time.sleep(1)
return "over" #子进程执行完后返回给操作系统,返回给父进程
def test2(args):
print("-----callback func----pid=%d"%os.getpid())#主进程调用test2
print("------callback func---args=%s"%args)
def main():
pool=Pool(3)
pool.apply_async(func=test,callback=test2)#回调
time.sleep(5)#收到func进程结束后的信号后,执行回调函数test2
print("----主进程-pid = %d"%os.getpid())
if __name__=="__main__":
#main()
pool=Pool(3)
pool.apply_async(test,callback=test2)#回调
time.sleep(5)#收到func进程结束后的信号后,执行回调函数test2
print("----主进程-pid = %d"%os.getpid())
'''''显示结果不太正确,应该先运行test呀,再运行test2
-----callback func----pid=7044
------callback func---args=over
----主进程-pid = 7044
----进程池中的进程-----pid=3772,ppid=7044 --
-----0----
-----1----
-----2----
'''
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22