京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习和数据分析将会创造怎样的商业未来
作为一家致力于
推动人工智能民主化的公司,
英特尔在人工智能的应用中
毫无疑问要做“第一个吃螃蟹的人”。
但是人工智能现在的“味道”究竟好不好,
只有亲口品尝过的企业才知道。
最近,英特尔采用了机器学习技术来收集和分析客户数据,并进行了商业应用,想知道我们怎么做?赶快阅读文章,文末更可获取完整版白皮书,看英特尔如何通过人工智能和机器学习提升市场竞争力!
在智能化的时代,数据无处不在:消费者,机器,甚至是数据本身都可以成为获取数据的来源。但是如果我们掌握的数据,就像散落的拼图一样被存放起来,那么这些数字时代的“资源”,对企业而言的价值就会大打折扣。
在英特尔,机器学习在业务中的应用正在成为新的利润增长源之一。在英特尔最近发布的白皮书中提到的“基于机器学习的数据挖掘平台正在帮助英特尔重新认知客户”,因为这一平台可以帮助英特尔销售和市场部门解决特定问题:如何利用获取的数据改进销售策略,提升效率,并且通过更好的分销商政策,最终从市场中赢得更多利润。
我们建立的机器学习平台提供了一个英特尔客户群的大图景,也正是因为读懂了客户,我们企业发展的愿景和行动才更加清晰。使用这一机器学习系统,英特尔能让核心代理和销售代表更好地理解客户,并且能够跟客户谈论他们最关心的话题。
作为一家正在转型过程中的公司,英特尔正在加速开拓新的市场,例如物联网(IoT)和云计算服务。新的市场给英特尔销售团队带来了新的挑战:如何发现并准确地与客户群体沟通——他们在关心什么?他们会对什么内容感兴趣?
在这个信息过载的时代,电子邮件、Twitter推送和领英消息都很容易被忽略或删除。除非,读者在这些信息中发现了跟他们当下需求相关的内容。因此,销售团队需要了解更多的背景信息才能保证他们的传播不被视为“垃圾信息”,而且可以引发读者的兴趣和点击。
我们建立的机器学习平台,囊括了客户培训时积累的数据,我们官方网站访问的数据,以及过去的销售数据。
作为数据科学家,我们也知道销售和市场团队想认识他们之前没有接触过的客户,我们通过利用新的数据资源帮助他们实现这一目标。其中一个可供利用的资源,就是我们客户的网站或者其他沟通渠道——比如Twitter,我们通过这些渠道来获取数据,完善我们的潜在客户数据库,并且间接地了解了不同客户的需求。
举个例子,我们的销售团队希望提升英特尔IoT 网关产品的销量。对于我们客户官方网站的访问和社交媒体内容的分析可以确定销售传感器、智能楼宇控制系统、车队管理系统或者其他IoT服务的公司,这类公司可能涵盖很多不同的行业,例如制造业、建筑业或者零售业,其中的某些公司,就会对英特尔究竟能提供什么IoT产品很感兴趣,这些公司也就更有可能去打开我们的推广邮件。
毫无疑问,这一过程中我们也遇到了一些挑战。
第一个就是如何进行网站的自动化分类。一些第三方供应商提供了网站分类工具,但我们发现这些工具往往不能灵活地适配我们的需求,他们所提供的信息不够有针对性,比如这些工具可能把一家网站简单地定义为“IT硬件”,但是毫无疑问,我们会需要更多、更细致的划分标准来满足销售和市场团队的需求。
借助我们建立的机器学习系统,销售团队可以设定定制化的分类——这里没有预先设置好的分类。这种做法让销售团队能够在销售过程中进行定义和修改,依据特别的情况来更新设定以满足相应的需求。机器学习平台足够灵活,因此可以快速地适应销售策略和目标的变化。
另外一个挑战就是如何去应对混乱的数据集。数据是可以被整理和组织以供更方便地使用的。但事实上,企业数据通常却是混乱无常,缺乏秩序。英特尔IT部门的数据科学家为了应对这一状况,必须找到一种能提供深入洞察的创新方式,比如通过细致的问题分类,数据分析和数据建模,目前的科学前沿技术已经能提供这种经过验证的算法来实现这一目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23