
大数据:大量商业价值被浪费
我们都知道使用大数据非常的有前途,然而基于当下的许多因素,数据的有效利用仍然是个瓶颈。药物研发过程中,数据的使用多于化学过程;新能源的探测中,数据的使用超过地质学;恐怖分子的追踪、预防欺骗中同样如此。
现在我们已经认识到的上述的这些问题和其它一些全局性问题,都是数据使用的瓶颈所造成的。这种情况催生了大数据上的海量投资,而数据工作同样成为了最热门的岗位 —— 数据科学家,更把私人数据分析服务提供商的估值推到数十亿美元。然而,你能想象到将分析的数据从1%提升到100%的前景吗。
对已有数据分析的见解
如果你拥有一个和人类基因一样庞大的数据集,你该如何开始?比如,奥巴马最近提倡对人类大脑进行绘制?为了突破,我们需要解决这个世界上最复杂的问题,我们需要根本上改变从数据中获取知识的途径。这里我们必须首先思考的是:
从查询开始必然是一个死胡同:查询本身并没有问题。事实上一旦你知道问什么问题,查询是至关重要的。同样这也是关键所在:从查询开始的初衷是从大量的数据中发现一个指针,然而他们并未做到。
数据是有开销的:大部分情况下,数据的储存已经不再昂贵。而且通过使用类似Hadoop或Redshift的工具,即使查询大量的数据都变得非常划算。当然,这只是从硬件的角度上讲。
见解就是金钱:我们愿意承担花销唯一理由就是数据中的见解可以释放价值。遗憾的是,我们失去了已收集数据中大部分的价值。虽然收集数据的成本可能会很高,但是无效分析带来的成本显然更高。当下并不存在什么工具可以直接从数据中提取见解,我们依赖着非常聪明的人去提出假设,然后使用我们的工具去证实(或者是否定)这些臆测。因为依赖的是臆测,这个途径存在着天生的缺陷。
你已经拥有了足够多的数据:这里经常存在的信念就是 ——
“如果我们拥有了足够多的数据,我们肯定会得到我们想要的。”太多的时间和精力被浪费在新的数据收集上,其实你可以用你手中的数据做更多的事情。举个例子,Ayasdi最近在Nature
Scientific Reports公布的从12岁乳腺癌患者身上获得的新见解,就已经被深入分析了10多年之久。
大数据只是起步,并不是终点
经常会听到我们在癌症研究、能源勘探、药物发现、金融欺诈检测等领域取得了关键性突破,如果因为炒作出来的“大数据泡沫”导致人们因为各种原因在数据分析投资上的失败,这与犯罪又有何不同?
所以我们需要给予数据分析更高的期望,我们更需要认识到下一代解决方案必须满足:
授权领域专家:数据科学家出现的频率已完全跟不上企业的需求。这里不妨这么做,停止继续为他们(数据科学家)开发工具;取而代之的是,给商业用户(生物学家、地质学家、安全分析师等)开发对应的工具。他们比任何人都明白问题出现的环境,但可能跟不上最新的技术或数学。
加速探索:我们需要更快的获得关键见解。事实证明大数据技术的处理速度并没有承诺的那么快。如果一直这样发展下去,可能我们永远都得不到足够快的关键见解获得速度,因为我们永远都不可能针对所有数据提出所有的问题。
人机整合:为了更快的获得见解,我们需要加大对机器智能的投资。我们需要机器能在数据点之间寻求连接和关系时担当更多的重任,让其给商业用户一个更好的起点去探索见解。事实上通过算法途径解决这些问题是完全可行的,并且人们本身永远都不可能发现大型数据集上的显著特征。例如在最近的一项研究中,通过算法查询网络搜索引擎日志发现了之前未报告过的药物副作用。
分析各种形式的数据:当然,研究人员需要分析结构化和非结构化的数据。同样我们需要认识非结构化数据的多样性:所有语言、声音、视频和面部识别文档。
当谈到大数据演变,我们只处于其初级阶段。显而易见如果我们继续分析百分之一的数据,那么我们只能挖掘其1%的价值。如果我们能够分析其它的99%,那么想象一下我们可以从各种方面推动世界进步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18