京公网安备 11010802034615号
经营许可证编号:京B2-20210330
实施大数据战略的企业有哪些特点
不过,要想成为一家以信息为中心的企业,并在激烈的市场竞争中保持领先优势,仅仅只是收集了大量的数据显然是不够的。因此,那些成功地实施了大数据战略的企业都具备哪些主要特点呢?
建立信息中心文化
那些已经成功实施了大数据策略的企业都知道,仅仅是对海量的数据进行收集是无用的。关键在于对所有收集的重要数据信息进行正确的分析,从数据检索中找出有助于正确的经营决策的信息。成功部署了大数据策略的企业都建立了信息中心文化,企业的所有员工都充分认识到良好的分析和可视化的信息的可能性。信息可视化效果越好,您才能根据这些信息做出更好的企业决策。美国货物运输公司US
Xpress就是这方面的一个很好的例子,通过iPad,该企业所有的卡车司机都能及时的掌握所有必要的信息,及时他们仍在运输途中。整个企业围绕信息的充分利用来做出业务决定。
不断创新和保持领先的动力
大数据使得企业能够在激烈的市场竞争中保持领先的竞争优势,并不断的重新发掘企业自身。这些企业都在引领着市场。他们都是新技术的创造者和早期采用者,其创新的动力使他们在很早之前都早已经实现了大数据策略的部署。如果您想充分享受到大数据的策略的优势,您的企业最好是新技术的创造者或早期采用者,从现在起点5到10年内,大数据将成为商品。
集中式数据存储
大数据是海量的数据,每天都能够达到数百万GB甚至更多。所以,为了开始您企业大数据战略的部署,您需要首先收集大数据。大数据企业最为强大的特征之一便是他们收集一切的数据:包括社交媒体数据、工作日志数据、传感数据等。然后对这些数据进行存储,之后决定您的企业是否需要这些数据。利用Hadoop,数据信息的存储成本应该不是一种障碍,您的企业可以使用商品硬件,以非结构化和半结构化的形式保存其原始格式,这样可以在您不使用这些数据时为您节省资金。您可以存储任何您所能收集到的数据信息,并将其存储在一个集中的位置,以防止IT基础设施各自为政。
数据驱动的产品
为了收集数据,确保您企业所提供的所有产品都能够收集到数据。对于在线产品,很容易进行数据信息的收集,但越来越多的离线产品也可以收集大量的数据。劳斯莱斯的发动机在运行过程中也能收集100GB的数据信息,而TomTom公司每天能够从其遍布全球的导航系统收集到大约55亿的数据集。而那些汽车公司在他们的汽车上安装了数百个传感器来对其进行监测,并在汽车发生故障后规划如何进行维修。最后的例子是约翰·迪尔,他将自己的拖拉机与智能传感器相结合,用来监测拖拉机机器的操作,但更重要的是监测农场的农作物。您所收集的数据信息越多,您的大数据的策略就越奏效。因此,从现在就开始收集大数据吧!
聘请大数据专家
分析百万兆字节而且是不同类型的数据是一项相当艰巨的任务,尽管许多大数据初创企业都声称他们的产品不需要IT部门耗费昂贵的成本来运维(但聘请大数据科学家的成本是昂贵的)。所有部署了大数据策略的企业至少聘请了一个数据科学家。如果您的企业是一家大型企业,您应该聘请更多的数据科学家。以LinkedIn为例,该公司有超过100位数据科学家,而通用汽车决定雇佣1万名IT员工,其中就包括许多的数据科学家。一位训练有素的数据科学家可以帮助您找出您需要咨询的问题的准确的解答方案,进而充分利用大数据战略的优势。请务必要好好对待这些大数据专家,因为他们是稀缺的,而且市场需求非常大。
不要等待,现在就开始
麦肯锡预计,到2018年,仅在美国市场,数据科学家人才短缺将达到14万至19万,而相关方面的管理人才短缺将达到150万。所以,现在就开始着手吧,不要等到您的竞争对手成长壮大了(他们可能现在还不存在)。从现在就开始收集大量的数据,并将其使用Hadoop进行集中存储,聘用或培训您企业的数据的科学家,改变您企业的以数据信息为中心的文化。这将有助于推动您企业的创新,保持市场领先地位。不要等待,因为这是大数据发展的唯一出路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27