
大数据爆炸将改变人类思维
每个人都知道互联网改变了企业经营、政府运作以及人们生活的方式。但是一种新的、不那么明显的技术趋势却有着同样巨大的变革能力,那就是“大数据”(BigData)。大数据的趋势发端于下面这个事实:如今到处传播的信息比以往任何时候都多出了许多,而且这一趋势正在应用于非同寻常的新用途。大数据与互联网截然不同,虽然互联网使数据的收集和共享方便了很多。大数据的意义并不仅仅是通信:其本质是我们可以从大量的信息中学习到从较少量的信息中无法获取的东西。
将改变人类思考方式
在公元前3世纪,亚历山大图书馆被认为收藏了全部的人类知识。而如果把今天全世界的信息平分给每一个活着的人,那么每个人拥有的信息量将足足超过当年亚历山大图书馆全部藏书的320倍。如果把所有这些信息刻到光盘上并且分5摞叠起来的话,那么这些光盘可以一直堆到月球。
这种数据爆炸是相对新鲜的现象
仅仅在2000年的时候,全世界全部的存储信息中还只有1/4是数字化的,其余的都保存在纸张、胶片和其他模拟介质上。但是由于数字数据数量的增长十分迅速——几乎每三年就翻一番,这种情形很快发生了逆转。今天,在所有存储信息中只有不到2%是非数字化的。
鉴于如此悬殊的比例,人们免不了在理解大数据的时候仅仅从数量上进行考虑。然而这将会产生误导。大数据的另一个特征是它能够用数据来表现世界的众多层面,而这些层面以往从来都没有被量化过--这种特征可以被称为“数据化”。例如,位置信息的数据化最早是由于经纬度的发明,而最近又有了GPS。当计算机对几个世纪内的书籍进行取样时,文字便成了被处理的数据。甚至连友谊和爱好也被数据化了——例如通过脸谱网。借助于廉价的电脑内存、高性能处理器、智能算法、聪明软件以及从基本统计学中借鉴来的数学知识,这样的一类数据正在被应用于难以置信的新用途中。这种新方法并不是试图“教会”计算机去从事驾驶或翻译这样的事情,而是要向计算机输入足够多的信息,从而使它们能够推断概率,例如交通指示绿灯亮、红灯不亮的概率,或者是在特定语境下“light”一词意为“光”而不是“轻”的概率。
以这种方式对大量数据加以利用,要求我们在三个方面彻底改变对数据的态度。第一是收集和使用大量数据,而不是像统计学家们在过去100多年里所做的那样,只满足于少量的数据或样本。第二是抛弃我们对有条理和纯净的数据的偏爱,转而接受杂乱无章——在越来越多的情形下,少许的不精确是可以容忍的。第三,在许多场合,我们需要放弃对事情原委的追究,而代之以对相关性的接纳。利用大数据,而不是试图弄懂发动机抛锚或药物副作用消失的确切原因,研究人员可以收集和分析大量有关此类事件的信息及一切相关素材,找出可能有助于预测未来事件发生的规律。大数据有助于回答是什么、而不是为什么的问题——通常有这样的回答就足够了。
互联网重塑了人类交流的方式。大数据则不同:它标志着社会处理信息方式的变化。随着时间的推移,大数据可能会改变我们思考世界的方式。随着我们利用越来越多的数据来理解事情和作出决定,我们很可能会发现生活的许多层面是随机的、而不是确定的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16