
企业向机器学习转型所需遵循的五大步骤
导读:
如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备。
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。
原文翻译:
假如你想修个新房,你不但得购买新建材,还得雇佣熟练的建筑工人,才能把房子修起来。首席信息官们(CIO)要想推行机器学习技术,从而在没有人类直接干预的情况下,对业绩加以分析与提升,他们也得遵循同样的规则。企业IT云服务公司ServiceNow的一项最新调查显示,大多数CIO都因为缺乏所需的人才、数据质量与预算,而无法充分利用这种技术。若你的企业即将踏上机器学习的征程,那么,要让投资物有所值,你必须遵循五大步骤。
这五大措施应尽快采取,因为说不定,大家期盼已久的机器学习时代很快就要降临了。效仿人类智能的机器虽然被炒得热火朝天,但计算机科学早已经迎头赶上。如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
最近,《全球CIO观点调查》(Global CIO Point of View Survey)向500名CIO发出了问卷。调查结果显示,企业都在为这种变革性的技术的普及摩拳擦掌,以实现自动化决策。近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备,相比之下,认为自己企业物联网战略相当或高度完备的占到35%,数据分析战略对应的比例则达65%。
根据麦肯锡(McKinsey)的一项调查,为实现机器学习方面的数据与分析目标,最重要的挑战有这样三个:
1)支持数据与分析活动的企业架构;
2)行之有效的技术基础设施;
3)管理层的参与。该研究还宣称,能够有效驾驭这三点的企业将能创造出显著的价值,并实现自身的差异化;办不到的企业,则会日益陷入劣势地位。
要捕获更大的价值,企业要做的不仅仅是投资于技术。对企业架构或流程的改变也必不可少,这其中包括对待人才的态度、IT管理与风险管理。要取得进步,企业必须遵循以下五个步骤:
一、改进数据质量
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。CIO要考虑实施恰当的解决方案,简化数据维护,从而加速向机器学习转型。第一步就是整合冗余或预制的IT工具,将它们变成单一的数据模型。
二、树立价值实现方式
将所有技术目标的商业价值明确表述出来,继而确定这些目标的最佳实现方式。这包括审视已有流程,找到最能得益于自动化的非结构化工作模式。知道了碎片化数据都在哪里,你也就知道了如何用自动化实现生产效率的提升。
三、创造最优客户体验
机器学习带来的自动化可以促进运营效率,但不要忘了,它也能(在不牺牲准确度的前提下)加速决策,改进客户体验,从而提高投资回报率。先设想一下你想创造的客户体验,然后在商业流程之中,找到最能提升客户体验的元素,加以重点投资。机器学习使企业或机构能够针对每一位顾客,度身定制相应的广告、呼叫中心的互动,乃至产品或服务,以及预测顾客接下去的需求。
四、设定指标并加以衡量
CIO们深知机器学习的价值,但高管团队和董事会其他成员可能就不清楚了。因此,在着手实施之前,CIO们必须树立预期,设置成功指标,并准备好充分的商业依据,在申请款项时,随时呈递给领导层。在实施机器学习技术、收获智能自动化的益处的同时,这些衡量指标也得随时调整
五、理解企业文化将受到的影响
在企业引入机器学习的同时,雇员的角色也将发生改变,这就需要CIO们调整雇佣与培训过程。这个不难,因为它所需的技能组合,包括数据科学、工程学、数学和批判性思维在内,就是云时代的必备技能组合。这种转型很可能给某些雇员造成不适,因此,请务必使机器学习的价值转化到他们的日常工作之中。机器并未接管企业,它们将雇员从繁琐的手动操作中解放了出来,使员工专注于更加战略性的项目。
但这种不适的感受,CIO们也有可能面临。他们的角色也需要不断演变,从维持技术层面的正常运转,保障企业运营,到以高管的身份与企业各个层面广泛互动,因此,其战略重要性也将迈上新的台阶。
企业要实现机器学习的投资回报,就离不开规划与严格的贯彻执行——同时参照技术转型的速度、其对雇员日常工作的影响,对雇员做出相应的调整。遵循上述五个步骤,这一转型就会格外顺畅。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18