京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用六大模式
捧着金饭碗,第三方大数据公司是如何在数据堆中觅得“金块”的呢?
“数据挖掘公司的规模不同,影响力不同导致数据挖掘公司的商业模式也有所不同。”南开大学商学院致力于数据挖掘研究的安利平教授在接受商报记者采访时表示,目前比较盛行的数据挖掘公司多为两大运营模式:第一种是直接为企业用户提供其所需求的数据;第二种则是为不同的企业或企业不同的需求,对数据进行分析,提供针对性的信息,以此获利,如天相投顾就是此类公司之一。
中国计算机学会会员、宏源证券研究所计算机行业高级专家赵国栋表示,数据挖掘公司一般有六种商业模式值得参考:第一种是以广联达等公司为代表的租售数据模式,它们通过出售广泛收集、精心过滤时效性强的数据,成为各自行业的翘楚。而庞大的“数据库”则是它们的资产,也是竞争对手难以逾越的门槛;第二种则是以彭博为代表的租售信息模式,它们聚焦在某个行业,广泛收集相关数据、深度整合萃取信息,以庞大的数据中心加上专用的数据终端,形成数据采集、信息萃取、价值传递的完整链条;第三种则是数字媒体模式,在电视、纸媒衰落的背景下,新型的数字媒体公司充分发挥大数据技术的优势,广泛搜集数据开展精准营销业务;第四种则是数据使能模式。譬如阿里金融为代表的小额信贷和电影的票房预测等业务,如果没有大量的数据,缺乏有效的数据分析技术,这些业务就难以开展;第五种则是数据空间运营模式,比如近期势头强劲的网盘,如果从大数据角度来看,便是因为各家纷纷嗅到大数据商机,开始抢占个人、企业的数据资源;第六种则是大数据技术提供商,比如开发语音、视频等数据处理技术的企业。
数据提供商:服务对象的“首席执行客户”
“不管是哪种商业运营模式,拥有庞大的数据库是根本。只有拥有了大而全的数据,才能使数据挖掘公司为多个领域提供数据。”南开大学商学院教授安利平介绍说,有了数据库基础,数据挖掘公司应该做的便是不断完善和更新自己的数据挖掘工具,包括数据分析流程、技术等。
从目前的行情来看,大多数数据挖掘公司都主要服务于银行业、保险业。因为这些行业需求大量客户数据以此来发展业绩,从中获得盈利。
在中国计算机学会会员、宏源证券研究所计算机行业高级专家赵国栋看来,大数据可掘金的行业几乎无处不在,企业对数据的需求已经像毛细血管一样渗透到各个领域。赵国栋表示,数据挖掘公司要做好大数据,“应该比他服务的公司更了解其客户,才能深入分析客户的需求”。如要给一家影院做数据挖掘,就应该调查常来这家影院的消费者,每一个时间段对应什么样的消费者,他们对电影的偏好,以及相关消费的偏好等,数据挖掘公司要做的就是深入到消费者中去。
“以前的数据挖掘,只在乎解决企业的技术问题,大数据时代的数据挖掘,则应该是帮助业务部门开拓市场,扩大客户群体,提供的不只是技术,还包括运营、经营方案等。”赵国栋介绍说,除了市场广阔,具备数据挖掘能力的公司也是资本的宠儿。
“数据的商机就在于媒体策略与选择的更加有效性、媒体可利用的效率提高、传播信息的效率提高等。做到极致,其实数字媒体能够卖的不仅仅是受众的眼球,而是其通路的价值。随视传媒与多家大型流量媒体伙伴合作,要把‘数据’商机和在线销售通路画上等号。”沈雁介绍说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15