京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用六大模式
捧着金饭碗,第三方大数据公司是如何在数据堆中觅得“金块”的呢?
“数据挖掘公司的规模不同,影响力不同导致数据挖掘公司的商业模式也有所不同。”南开大学商学院致力于数据挖掘研究的安利平教授在接受商报记者采访时表示,目前比较盛行的数据挖掘公司多为两大运营模式:第一种是直接为企业用户提供其所需求的数据;第二种则是为不同的企业或企业不同的需求,对数据进行分析,提供针对性的信息,以此获利,如天相投顾就是此类公司之一。
中国计算机学会会员、宏源证券研究所计算机行业高级专家赵国栋表示,数据挖掘公司一般有六种商业模式值得参考:第一种是以广联达等公司为代表的租售数据模式,它们通过出售广泛收集、精心过滤时效性强的数据,成为各自行业的翘楚。而庞大的“数据库”则是它们的资产,也是竞争对手难以逾越的门槛;第二种则是以彭博为代表的租售信息模式,它们聚焦在某个行业,广泛收集相关数据、深度整合萃取信息,以庞大的数据中心加上专用的数据终端,形成数据采集、信息萃取、价值传递的完整链条;第三种则是数字媒体模式,在电视、纸媒衰落的背景下,新型的数字媒体公司充分发挥大数据技术的优势,广泛搜集数据开展精准营销业务;第四种则是数据使能模式。譬如阿里金融为代表的小额信贷和电影的票房预测等业务,如果没有大量的数据,缺乏有效的数据分析技术,这些业务就难以开展;第五种则是数据空间运营模式,比如近期势头强劲的网盘,如果从大数据角度来看,便是因为各家纷纷嗅到大数据商机,开始抢占个人、企业的数据资源;第六种则是大数据技术提供商,比如开发语音、视频等数据处理技术的企业。
数据提供商:服务对象的“首席执行客户”
“不管是哪种商业运营模式,拥有庞大的数据库是根本。只有拥有了大而全的数据,才能使数据挖掘公司为多个领域提供数据。”南开大学商学院教授安利平介绍说,有了数据库基础,数据挖掘公司应该做的便是不断完善和更新自己的数据挖掘工具,包括数据分析流程、技术等。
从目前的行情来看,大多数数据挖掘公司都主要服务于银行业、保险业。因为这些行业需求大量客户数据以此来发展业绩,从中获得盈利。
在中国计算机学会会员、宏源证券研究所计算机行业高级专家赵国栋看来,大数据可掘金的行业几乎无处不在,企业对数据的需求已经像毛细血管一样渗透到各个领域。赵国栋表示,数据挖掘公司要做好大数据,“应该比他服务的公司更了解其客户,才能深入分析客户的需求”。如要给一家影院做数据挖掘,就应该调查常来这家影院的消费者,每一个时间段对应什么样的消费者,他们对电影的偏好,以及相关消费的偏好等,数据挖掘公司要做的就是深入到消费者中去。
“以前的数据挖掘,只在乎解决企业的技术问题,大数据时代的数据挖掘,则应该是帮助业务部门开拓市场,扩大客户群体,提供的不只是技术,还包括运营、经营方案等。”赵国栋介绍说,除了市场广阔,具备数据挖掘能力的公司也是资本的宠儿。
“数据的商机就在于媒体策略与选择的更加有效性、媒体可利用的效率提高、传播信息的效率提高等。做到极致,其实数字媒体能够卖的不仅仅是受众的眼球,而是其通路的价值。随视传媒与多家大型流量媒体伙伴合作,要把‘数据’商机和在线销售通路画上等号。”沈雁介绍说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27