
Python实现的数据结构与算法之基本搜索详解
本文实例讲述了Python实现的数据结构与算法之基本搜索。分享给大家供大家参考。具体分析如下:
一、顺序搜索
顺序搜索 是最简单直观的搜索方法:从列表开头到末尾,逐个比较待搜索项与列表中的项,直到找到目标项(搜索成功)或者 超出搜索范围 (搜索失败)。
根据列表中的项是否按顺序排列,可以将列表分为 无序列表 和 有序列表。对于 无序列表,超出搜索范围 是指越过列表的末尾;对于 有序列表,超过搜索范围 是指进入列表中大于目标项的区域(发生在目标项小于列表末尾项时)或者指越过列表的末尾(发生在目标项大于列表末尾项时)。
1、无序列表
在无序列表中进行顺序搜索的情况如图所示:
def sequentialSearch(items, target):
for item in items:
if item == target:
return True
return False
2、有序列表
在有序列表中进行顺序搜索的情况如图所示:
def orderedSequentialSearch(items, target):
for item in items:
if item == target:
return True
elif item > target:
break
return False
二、二分搜索
实际上,上述orderedSequentialSearch算法并没有很好地利用有序列表的特点。
二分搜索 充分利用了有序列表的优势,该算法的思路非常巧妙:在原列表中,将目标项(target)与列表中间项(middle)进行对比,如果target等于middle,则搜索成功;如果target小于middle,则在middle的左半列表中继续搜索;如果target大于middle,则在middle的右半列表中继续搜索。
在有序列表中进行二分搜索的情况如图所示:
根据实现方式的不同,二分搜索算法可以分为迭代版本和递归版本两种:
1、迭代版本
def iterativeBinarySearch(items, target):
first = 0
last = len(items) - 1
while first <= last:
middle = (first + last) // 2
if target == items[middle]:
return True
elif target < items[middle]:
last = middle - 1
else:
first = middle + 1
return False
2、递归版本
def recursiveBinarySearch(items, target):
if len(items) == 0:
return False
else:
middle = len(items) // 2
if target == items[middle]:
return True
elif target < items[middle]:
return recursiveBinarySearch(items[:middle], target)
else:
return recursiveBinarySearch(items[middle+1:], target)
三、性能比较
上述搜索算法的时间复杂度如下所示:
搜索算法 时间复杂度
-----------------------------------
sequentialSearch O(n)
-----------------------------------
orderedSequentialSearch O(n)
-----------------------------------
iterativeBinarySearch O(log n)
-----------------------------------
recursiveBinarySearch O(log n)
-----------------------------------
in O(n)
可以看出,二分搜索 的性能要优于 顺序搜索。
值得注意的是,Python的成员操作符 in 的时间复杂度是O(n),不难猜出,操作符 in 实际采用的是 顺序搜索 算法。
四、算法测试
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_print(algorithm, listname, target):
print(' %d is%s in %s' % (target, '' if algorithm(eval(listname), target) else ' not', listname))
if __name__ == '__main__':
testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]
orderedlist = sorted(testlist)
print('sequentialSearch:')
test_print(sequentialSearch, 'testlist', 3)
test_print(sequentialSearch, 'testlist', 13)
print('orderedSequentialSearch:')
test_print(orderedSequentialSearch, 'orderedlist', 3)
test_print(orderedSequentialSearch, 'orderedlist', 13)
print('iterativeBinarySearch:')
test_print(iterativeBinarySearch, 'orderedlist', 3)
test_print(iterativeBinarySearch, 'orderedlist', 13)
print('recursiveBinarySearch:')
test_print(recursiveBinarySearch, 'orderedlist', 3)
test_print(recursiveBinarySearch, 'orderedlist', 13)
运行结果:
$ python testbasicsearch.py
sequentialSearch:
3 is not in testlist
13 is in testlist
orderedSequentialSearch:
3 is not in orderedlist
13 is in orderedlist
iterativeBinarySearch:
3 is not in orderedlist
13 is in orderedlist
recursiveBinarySearch:
3 is not in orderedlist
13 is in orderedlist
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29