京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python实现的数据结构与算法之基本搜索详解
本文实例讲述了Python实现的数据结构与算法之基本搜索。分享给大家供大家参考。具体分析如下:
一、顺序搜索
顺序搜索 是最简单直观的搜索方法:从列表开头到末尾,逐个比较待搜索项与列表中的项,直到找到目标项(搜索成功)或者 超出搜索范围 (搜索失败)。
根据列表中的项是否按顺序排列,可以将列表分为 无序列表 和 有序列表。对于 无序列表,超出搜索范围 是指越过列表的末尾;对于 有序列表,超过搜索范围 是指进入列表中大于目标项的区域(发生在目标项小于列表末尾项时)或者指越过列表的末尾(发生在目标项大于列表末尾项时)。
1、无序列表
在无序列表中进行顺序搜索的情况如图所示:
def sequentialSearch(items, target):
for item in items:
if item == target:
return True
return False
2、有序列表
在有序列表中进行顺序搜索的情况如图所示:
def orderedSequentialSearch(items, target):
for item in items:
if item == target:
return True
elif item > target:
break
return False
二、二分搜索
实际上,上述orderedSequentialSearch算法并没有很好地利用有序列表的特点。
二分搜索 充分利用了有序列表的优势,该算法的思路非常巧妙:在原列表中,将目标项(target)与列表中间项(middle)进行对比,如果target等于middle,则搜索成功;如果target小于middle,则在middle的左半列表中继续搜索;如果target大于middle,则在middle的右半列表中继续搜索。
在有序列表中进行二分搜索的情况如图所示:
根据实现方式的不同,二分搜索算法可以分为迭代版本和递归版本两种:
1、迭代版本
def iterativeBinarySearch(items, target):
first = 0
last = len(items) - 1
while first <= last:
middle = (first + last) // 2
if target == items[middle]:
return True
elif target < items[middle]:
last = middle - 1
else:
first = middle + 1
return False
2、递归版本
def recursiveBinarySearch(items, target):
if len(items) == 0:
return False
else:
middle = len(items) // 2
if target == items[middle]:
return True
elif target < items[middle]:
return recursiveBinarySearch(items[:middle], target)
else:
return recursiveBinarySearch(items[middle+1:], target)
三、性能比较
上述搜索算法的时间复杂度如下所示:
搜索算法 时间复杂度
-----------------------------------
sequentialSearch O(n)
-----------------------------------
orderedSequentialSearch O(n)
-----------------------------------
iterativeBinarySearch O(log n)
-----------------------------------
recursiveBinarySearch O(log n)
-----------------------------------
in O(n)
可以看出,二分搜索 的性能要优于 顺序搜索。
值得注意的是,Python的成员操作符 in 的时间复杂度是O(n),不难猜出,操作符 in 实际采用的是 顺序搜索 算法。
四、算法测试
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_print(algorithm, listname, target):
print(' %d is%s in %s' % (target, '' if algorithm(eval(listname), target) else ' not', listname))
if __name__ == '__main__':
testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]
orderedlist = sorted(testlist)
print('sequentialSearch:')
test_print(sequentialSearch, 'testlist', 3)
test_print(sequentialSearch, 'testlist', 13)
print('orderedSequentialSearch:')
test_print(orderedSequentialSearch, 'orderedlist', 3)
test_print(orderedSequentialSearch, 'orderedlist', 13)
print('iterativeBinarySearch:')
test_print(iterativeBinarySearch, 'orderedlist', 3)
test_print(iterativeBinarySearch, 'orderedlist', 13)
print('recursiveBinarySearch:')
test_print(recursiveBinarySearch, 'orderedlist', 3)
test_print(recursiveBinarySearch, 'orderedlist', 13)
运行结果:
$ python testbasicsearch.py
sequentialSearch:
3 is not in testlist
13 is in testlist
orderedSequentialSearch:
3 is not in orderedlist
13 is in orderedlist
iterativeBinarySearch:
3 is not in orderedlist
13 is in orderedlist
recursiveBinarySearch:
3 is not in orderedlist
13 is in orderedlist
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22