京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python实现的数据结构与算法之基本搜索详解
本文实例讲述了Python实现的数据结构与算法之基本搜索。分享给大家供大家参考。具体分析如下:
一、顺序搜索
顺序搜索 是最简单直观的搜索方法:从列表开头到末尾,逐个比较待搜索项与列表中的项,直到找到目标项(搜索成功)或者 超出搜索范围 (搜索失败)。
根据列表中的项是否按顺序排列,可以将列表分为 无序列表 和 有序列表。对于 无序列表,超出搜索范围 是指越过列表的末尾;对于 有序列表,超过搜索范围 是指进入列表中大于目标项的区域(发生在目标项小于列表末尾项时)或者指越过列表的末尾(发生在目标项大于列表末尾项时)。
1、无序列表
在无序列表中进行顺序搜索的情况如图所示:
def sequentialSearch(items, target):
for item in items:
if item == target:
return True
return False
2、有序列表
在有序列表中进行顺序搜索的情况如图所示:
def orderedSequentialSearch(items, target):
for item in items:
if item == target:
return True
elif item > target:
break
return False
二、二分搜索
实际上,上述orderedSequentialSearch算法并没有很好地利用有序列表的特点。
二分搜索 充分利用了有序列表的优势,该算法的思路非常巧妙:在原列表中,将目标项(target)与列表中间项(middle)进行对比,如果target等于middle,则搜索成功;如果target小于middle,则在middle的左半列表中继续搜索;如果target大于middle,则在middle的右半列表中继续搜索。
在有序列表中进行二分搜索的情况如图所示:
根据实现方式的不同,二分搜索算法可以分为迭代版本和递归版本两种:
1、迭代版本
def iterativeBinarySearch(items, target):
first = 0
last = len(items) - 1
while first <= last:
middle = (first + last) // 2
if target == items[middle]:
return True
elif target < items[middle]:
last = middle - 1
else:
first = middle + 1
return False
2、递归版本
def recursiveBinarySearch(items, target):
if len(items) == 0:
return False
else:
middle = len(items) // 2
if target == items[middle]:
return True
elif target < items[middle]:
return recursiveBinarySearch(items[:middle], target)
else:
return recursiveBinarySearch(items[middle+1:], target)
三、性能比较
上述搜索算法的时间复杂度如下所示:
搜索算法 时间复杂度
-----------------------------------
sequentialSearch O(n)
-----------------------------------
orderedSequentialSearch O(n)
-----------------------------------
iterativeBinarySearch O(log n)
-----------------------------------
recursiveBinarySearch O(log n)
-----------------------------------
in O(n)
可以看出,二分搜索 的性能要优于 顺序搜索。
值得注意的是,Python的成员操作符 in 的时间复杂度是O(n),不难猜出,操作符 in 实际采用的是 顺序搜索 算法。
四、算法测试
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_print(algorithm, listname, target):
print(' %d is%s in %s' % (target, '' if algorithm(eval(listname), target) else ' not', listname))
if __name__ == '__main__':
testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]
orderedlist = sorted(testlist)
print('sequentialSearch:')
test_print(sequentialSearch, 'testlist', 3)
test_print(sequentialSearch, 'testlist', 13)
print('orderedSequentialSearch:')
test_print(orderedSequentialSearch, 'orderedlist', 3)
test_print(orderedSequentialSearch, 'orderedlist', 13)
print('iterativeBinarySearch:')
test_print(iterativeBinarySearch, 'orderedlist', 3)
test_print(iterativeBinarySearch, 'orderedlist', 13)
print('recursiveBinarySearch:')
test_print(recursiveBinarySearch, 'orderedlist', 3)
test_print(recursiveBinarySearch, 'orderedlist', 13)
运行结果:
$ python testbasicsearch.py
sequentialSearch:
3 is not in testlist
13 is in testlist
orderedSequentialSearch:
3 is not in orderedlist
13 is in orderedlist
iterativeBinarySearch:
3 is not in orderedlist
13 is in orderedlist
recursiveBinarySearch:
3 is not in orderedlist
13 is in orderedlist
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27