
大数据发展已具规模 下一步跨领域生态发展或是关键
随着移动互联网、智能终端和数据传感器的出现,数据正以超出想象的速度快速增长。据相关数据报告显示,2014年全球数据总量为6.2ZB(万亿GB),2015年全球数据总量达8.6ZB。目前全球数据的增长速度在每年40%左右,预计到2020年全球的数据总量将达到40ZB。
整体来看,中国的大数据产业初具规模,整个市场保持高速增长的态势。作为标志性的大数据元年,2015年中国大数据市场规模达到115.9亿元,2016年达到168亿元,预计到2021年中国大数据市场规模将达到898亿元。
技术创新迭代有序
现阶段,一大批大数据相关的企业在Hadoop&Spark大数据技术开发、数据挖掘主要算法、大并发数据物理存储与处理技术,自主分析技术,智能平台服务,特定领域研发数据分析工具,语音识别、图像理解、文本挖掘等机器深度学习方法方面,取得较大成果。在平台建设方面,阿里、腾讯等企业服务器单集群规模达到上万台,具备建设和运维超大规模大数据平台的技术实力。
大数据技术前景刺激人才建设。此前包括北京大学、人民大学等35所国内高等学府申报大数据专业。于此同时高校联合企业的产学研合作项目发展如火如荼。以深圳大学计算机软件学院为例,与中琛源科技等企业展开包括技术人员培训、科研成果落地试验、大数据平台技术研发等多项合作,促进技术交流,不断创新出新技术、新产品、新业态和新模式。
“大数据+”纵深发展成重点
在国家“十三五”战略规划、“互联网+”和“中国制造2025”等重大国家战略中,明确为大数据应用,大数据产业发展指明了方向。
现阶段,“大数据+”产业发展呈现两方面的深度应用。一方面,为用户“画像”,让企业对用户进行细分,提升业务精准度成为热门。2017年,大数据服务商中琛源发布“立咕应用”智能应用服务平台。中琛源市场总监谢梓桢告诉记者,通过采集-分析-营销应用,平台为每位消费者会员建立大数据画像和标签。企业能够根据业务需求定义用户标签,并且直接利用组合功能创建新标签,从而迅速找到目标用户,“支撑企业快速对接并开展品牌营销策划,实现智能化的业务应用”。
除消费产业大数据之外,现阶段,大数据应用还在向产业互联网方向延伸。大数据应用技术不断开发、完善,越来越多的“数据信息孤岛”被打破,呈现跨行业、跨领域的数据交流与融合。如智慧城市、智能医疗、智慧农业、大数据金融、教育等。
比较典型的是金融和汽车领域。随着大数据与金融保险行业的融合,将衍生出差异分级式的保险定价模式。随着车联网的加速发展,汽车后市场将迎来变革。整车制造商和互联网厂商将基于用户数据和车辆行驶数据实现跨界竞争等。
数字产业生态发展或是未来关键
据国际市场调研机构IDC指出,当前依托移动互联网、云、大数据为核心的数字化转型已然成为所有企业应对挑战的主要战略。预计到2018年,全球1000强企业的67%,中国1000强企业中的50%都将把数字化转型作为企业的战略核心。然而,企业依托大数据创新转型过程中,也面临技术储备不足、人才匮乏、数字战略模糊及战术欠缺等制约,企业发展大数据成本过高,数字化转型风险颇高。
对于企业而言,数据不是关键,以数据应用为核心,提供集数据分析及决策于一体的数字化生态模型才最重要。比如,建立一套统一的数据标准,将企业多维度、多场景的数据放在同一个数据综合平台整理、分析、共享,这样企业就可以通过平台上的大数据,直观清晰地了解企业自身涉及到日常管理、员工考勤、销售业绩、营销推广、客户服务等情况,并能提前预测,指导中小企业及时、精准制定策略。从而降低企业大数据成本、人力成本、决策成本等。
未来,大数据产业更加开放,并向生态化发展,以满足各行业的特性去求和不同用户的个性化需求。“数字生态并不局限于服务特定的行业或领域,而是帮助各行各业的企业用户,提供综合的数据云服务,包括移动办公,数字营销,精准客户服务等,帮助企业用户实现自身能力和产业的升级。”对此,中琛源大数据综合服务平台研发总监程贺雷这样描述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15