
大数据发展已具规模 下一步跨领域生态发展或是关键
随着移动互联网、智能终端和数据传感器的出现,数据正以超出想象的速度快速增长。据相关数据报告显示,2014年全球数据总量为6.2ZB(万亿GB),2015年全球数据总量达8.6ZB。目前全球数据的增长速度在每年40%左右,预计到2020年全球的数据总量将达到40ZB。
整体来看,中国的大数据产业初具规模,整个市场保持高速增长的态势。作为标志性的大数据元年,2015年中国大数据市场规模达到115.9亿元,2016年达到168亿元,预计到2021年中国大数据市场规模将达到898亿元。
技术创新迭代有序
现阶段,一大批大数据相关的企业在Hadoop&Spark大数据技术开发、数据挖掘主要算法、大并发数据物理存储与处理技术,自主分析技术,智能平台服务,特定领域研发数据分析工具,语音识别、图像理解、文本挖掘等机器深度学习方法方面,取得较大成果。在平台建设方面,阿里、腾讯等企业服务器单集群规模达到上万台,具备建设和运维超大规模大数据平台的技术实力。
大数据技术前景刺激人才建设。此前包括北京大学、人民大学等35所国内高等学府申报大数据专业。于此同时高校联合企业的产学研合作项目发展如火如荼。以深圳大学计算机软件学院为例,与中琛源科技等企业展开包括技术人员培训、科研成果落地试验、大数据平台技术研发等多项合作,促进技术交流,不断创新出新技术、新产品、新业态和新模式。
“大数据+”纵深发展成重点
在国家“十三五”战略规划、“互联网+”和“中国制造2025”等重大国家战略中,明确为大数据应用,大数据产业发展指明了方向。
现阶段,“大数据+”产业发展呈现两方面的深度应用。一方面,为用户“画像”,让企业对用户进行细分,提升业务精准度成为热门。2017年,大数据服务商中琛源发布“立咕应用”智能应用服务平台。中琛源市场总监谢梓桢告诉记者,通过采集-分析-营销应用,平台为每位消费者会员建立大数据画像和标签。企业能够根据业务需求定义用户标签,并且直接利用组合功能创建新标签,从而迅速找到目标用户,“支撑企业快速对接并开展品牌营销策划,实现智能化的业务应用”。
除消费产业大数据之外,现阶段,大数据应用还在向产业互联网方向延伸。大数据应用技术不断开发、完善,越来越多的“数据信息孤岛”被打破,呈现跨行业、跨领域的数据交流与融合。如智慧城市、智能医疗、智慧农业、大数据金融、教育等。
比较典型的是金融和汽车领域。随着大数据与金融保险行业的融合,将衍生出差异分级式的保险定价模式。随着车联网的加速发展,汽车后市场将迎来变革。整车制造商和互联网厂商将基于用户数据和车辆行驶数据实现跨界竞争等。
数字产业生态发展或是未来关键
据国际市场调研机构IDC指出,当前依托移动互联网、云、大数据为核心的数字化转型已然成为所有企业应对挑战的主要战略。预计到2018年,全球1000强企业的67%,中国1000强企业中的50%都将把数字化转型作为企业的战略核心。然而,企业依托大数据创新转型过程中,也面临技术储备不足、人才匮乏、数字战略模糊及战术欠缺等制约,企业发展大数据成本过高,数字化转型风险颇高。
对于企业而言,数据不是关键,以数据应用为核心,提供集数据分析及决策于一体的数字化生态模型才最重要。比如,建立一套统一的数据标准,将企业多维度、多场景的数据放在同一个数据综合平台整理、分析、共享,这样企业就可以通过平台上的大数据,直观清晰地了解企业自身涉及到日常管理、员工考勤、销售业绩、营销推广、客户服务等情况,并能提前预测,指导中小企业及时、精准制定策略。从而降低企业大数据成本、人力成本、决策成本等。
未来,大数据产业更加开放,并向生态化发展,以满足各行业的特性去求和不同用户的个性化需求。“数字生态并不局限于服务特定的行业或领域,而是帮助各行各业的企业用户,提供综合的数据云服务,包括移动办公,数字营销,精准客户服务等,帮助企业用户实现自身能力和产业的升级。”对此,中琛源大数据综合服务平台研发总监程贺雷这样描述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29