
对大数据的理解与思考
首先,大数据的到来,对人们的观念将带来深远的影响。
我们以前习惯认为:找到现象背后的原因,比清楚现象是什么更重要。通过“塔吉特怀孕预测”的例子可以看到,通过关联分析、聚类分析等数据挖掘方法,大家很容易找到事物之间的关系。但是,这些大数据分析结果,并不会直接告诉我们,事物之间为什么存在这些关系。在不清楚为什么存在这些关系之前,又的确看到了这些关系带来了价值;所以,在大数据应用领域就需要改变以前的思考方。即:先找到“是什么”再去找“为什么”;清楚是什么,与搞清楚为什么同等重要。
手工统计时代,出于收集全部数据非常困难或代价巨大的原因,很多数据分析都是采用抽样数据;但是,现在不同了,随着信息技术的发展,现在很多领域都能够方便的收集到全量数据。诸如无纸化办公的兴起、信息系统的使用、电子商务的发展等等,都为收集全量数据提供了便捷的条件。那么,这时候数据的“样本”=“全体数据”。这相对以前来说,也是革命性的影响。
在抽样分析时代,个别样本的质量甚至决定结果的质量。在大数据时代,这也变了,可以允许个别数据的不精确,甚至错误。举个简单例子来说明这个道理,比如在温室大棚里放一只温度计,当这只温度计有问题时,整个温度都是不准确的。若在大棚里均匀分布十几只温度计,其中一只有问题,对温室大棚温度的统计结果无碍大事,基本可以忽略其影响。
其次,大数据应用,影响商业变革和社会进步。
大数据应用正改变着企业的业务发展方式。比如:京东、天猫通过对交易数据的“二次利用”,寻找目标客户、定向推荐商品。也正是这些数据的二次利用给他们提供了大量价值,促进了这些企业的发展,推动着他们在营销、供应链与客户服务等领域的管理变革。同时,交易数据并不因为二次利用,而降低其价值;这也是,大数据应用与传统资源使用不同的地方。
数据的“混搭”分析,推动着商业发展和社会的进步。比如历史天气信息与航班误点信息,这两个不同领域的信息一块儿分析,便可以推算未来几天航班的误点率。再比如,通过神经中枢肿瘤患病率和手机使用时间长短之间的大数据关联分析,来研究神经中枢肿瘤患病率是否与手机使用时间长短有关系等等。
大数据的应用,也促生了很多商业机会。随着大数据时代的到来,形成了很多大数据拥有公司,以及大数据技术公司;数据与技术的结合变促生了很多大数据应用,因此带来了很多商业机会。例如,现在很多商业银行对自己大量客户的交易信息分析,规划新的理财产品,与其他商家合作,联合搞定向促销等等。
再次,大数据时代不再有个人隐私,将形成新的信息安全机制。
现在还经常听到诸如某某窥探我的隐私之类的话语,但是,在大数据时代几乎没有个人隐私,这不是骇人听闻。因为,现在微博、搜索引擎、社交网络、电商购物,已经成了我们生活中必不可少的一部分。根据每个人在互联网上留下的痕迹,通过大数据分析,很容易分析出一个人的爱好、习惯、性格、癖好等等。所以,大家都被“第三只眼”实时监控着,在大数据时代,几乎没有个人隐私!
没有个人隐私,是否就代表每个人可以随便传播别人隐私了呢?答案当然是否定的。因为传播别人隐私是不道德的,甚至是违法的。所以,现在新的信息安全规则正在重新定位,其中一个基调是:让数据使用者承担责任,不能滥用别人的隐私;我个人感觉这也比较合理。
总结
大数据只是“新概念”,并不是“新事物”。过去数据就存在,只是我们没有收集这些数据。但是,现在收集了这些数据,这个世界变得不一样了;它更新了人们过去对数据应用的认识,加快了商业和社会发展的新陈代谢,从中也让大家也看到了很多机会。大数据时代,已经到来。极目远眺,也看不到尽头。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15