
大数据的存储和搜索面临很大挑战
大数据并非是一个全新的概念,早在1980年,阿尔文托夫勒就在《第三次浪潮》一书中预言了由数据构成的“碎片化未来”,并将海量数据赞颂为“第三次浪潮的华彩乐章”。然而,大数据真正流行起来是在2011年之后,数据量呈几何指数上升,物联网、云计算等技术的日渐成熟使得数据的获取、存储和处理的成本急剧下降,促使大数据一时间成为了各方视线的焦点。
首先,伴随着移动终端、传感器的迅速普及以及社会化媒体等互联网应用的日益多样化,数据量呈现出爆发式的增长,数据集的规模已经达到了TB甚至是PB的级别。这些海量的、碎片化的数据不仅能够较为完整地刻画出人们在线行为,还可以通过各类传感设备的数据来记录实体经济的运行状况。
其次,数据的种类也愈发丰富,不仅包含文本内容,还包括图片、音频、视频等非结构化数据,为数据的存储和搜索带来了很大挑战,这意味着传统意义上适用于文本内容存储和分析的数据库关联算法、语义分析等手段已经渐渐失效。
第三,大数据蕴含着巨大的价值,但相比于庞大的数据规模,其价值密度却是非常稀疏的,可谓是“浪里淘沙、弥足珍贵”。例如,公安视频监控系统需要7×24小时的记录,但用于犯罪证据获取的也许只是短短数秒;对于零售产业的推荐系统,也只有通过海量数据的分析,才能进行较为精准的预测。
第四,大数据需要实时的记录与响应,如动态的股价、路况信息以及电子商务的交易数据等,都需要实时的调用和处理,才能够充分体现出数据的价值所在。此外,社会化媒体、社交网站中的关系数据成为了大数据的价值倍增器,这是因为人们已经不可避免地镶嵌于人际关系网络中,个体的影响力会经由社交网络快速蔓延。
不久前,作为全球最大零售商的沃尔玛也充分意识到了关系数据的重要性,在其社交基因组(Social Genome)计划中整合了用户在Facebook、Twitter中的关系数据,用以更精准地推测消费者的偏好。 综上所述,大数据的基本特征可以概括为规模化(Volume)、多样性(Variety)、高价值(Value)、速度快(Velocity)以及社会化(Social)等五个特点,即“4V 1S”的特点。这样的大数据浪潮,也深刻的影响了各个传统行业的发展轨迹,变革一触即发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01