
大数据与IT基础架构
有研究表明:人类70%的活动都是有规律可循的。大数据,可以让我们看到这种规律并预知未来,例如通过整理近期的气象情况和卫星云图,我们能够判断未来几天的天气状况。去年,央视两次携手百度分别打造“据说春运”与“据说春节”特别节目——“据说春运”携手百度地图,用大数据展现春节前后人口大迁徙的轨迹与特征;“据说春节”运用百度大数据来述说回娘家、恐婚族等春节长假期间的热门话题。可见,通过解读数据可以发现有趣的现象、挖掘以往被忽视的规律,还可以对人类的行为进行预测。
事实上,数据分析的案例自古有之,在前几年也有很多数据挖掘技术和应用的出现。但这些数据挖掘技术对数据的使用,都是先抽样、萃取人们或系统认为有价值的数据,再分析、挖掘,而并不是使用全部数据。原因很简单——信息的收集、存储和信息分析的系统构建、维护成本过于巨大,所以人们总是习惯在信息收集的过程中,把有关联的少部分精确数据留下。
以人们的日常购买行为为例,传统超市会通过对“时间、产品销售量/销售额”这几个指标的分析,判断近期哪些货品是热销产品,在短期更受用户的欢迎,进而对热销货品提供充足的货源保障,把热销货品放在超市最容易接触的位置,提供某些促销优惠等等。
再看另一个来自美国的零售商塔吉特的案例,它使用大数据进行“怀孕趋势分析”。通过对大量消费记录的分析,塔吉特公司注意到,准妈妈很可能在怀孕第三个月的时候购买某种乳液,并陆续购买营养品(如钙、镁、锌等)。塔吉特公司找到了几十种关联物,通过这些关联关系,预判客户是否怀孕以及预产期的大概日期。在客户怀孕的不同阶段,该公司会向客户推销相应的产品或优惠券。
前两个案例,分别是典型的“小数据”分析和“大数据”分析。大数据不仅是数据量大,同时数据种类多;不是数据的抽样,而是数据的全集;不是与目标有因果关系的数据,而是所有有关联的数据。与传统的数据分析相比,大数据可以被用来开发新产品和新型服务,其价值越来越受到关注。
为什么在几年前,没有人收集和利用全部的数据,再进行大数据分析呢?除了成本上的考虑,还存在另一个问题:传统上,人们是基于单一“业务”去构建系统,而不是基于“数据”去构建系统。例如,某超市要建设一个CRM系统,IT部门会基于“客户管理”这个业务采购软硬件,所有建设都围绕“客户管理”,很少考虑开放、兼容等特性;如果想再上一套“行为分析”系统,则围绕“行为分析”这个业务去采购软、硬件。当需要把两个系统的数据进行统一分析时,由于两套系统不兼容,需要中间件来转接、编译,因此两套系统各自要进行二次开发以实现兼容,使得操作难度变高,造成有价值的“数据”被困在了“系统”这个孤岛里。因此在规划初期,就应充分考虑到数据的流动性、系统的兼容性,考虑到数据将会被各种系统多次使用的情况。
也许有人会说:这样的系统规划会非常复杂,构建成本太高,很难把系统的模型和方案想清楚。我们再来看看互联网公司。大型互联网公司这几年在构建IT系统时,都会采用标准架构:如X86服务器、标准化的网络协议、开源的数据库、分布式存储等等。因为只有这样,才能够通过统一的硬件和软件平台来承载各种各样的业务。比如微信、QQ、游戏、视频等业务都是承载在同一个平台上,所有数据的流动在基础设施这个维度里都是自由的。所以我们看到如腾讯、阿里巴巴等互联网公司上线新业务的速度非常快,而且能够根据用户各种网络行为,判断互联网用户感兴趣的“热点”,在某项业务上再叠加新服务。这就是大数据的典型应用。
在构建了标准的硬件、软件基础设施之后,业务可以被逐步规划,分阶段上线,但是所有的业务架构、程序接口,都应按照标准基础设施的统一要求进行设计开发。大数据本身是“业务”,需要建设者用更多的时间去摸索业务模型,在实践中完善新技术,把现有的封闭的系统逐步改良为开放的标准化架构。
从IT的发展趋势看,大数据时代是在云计算建设成熟之后到来的,大多数互联网公司的建设历程也遵循了这种规律。云计算将带来标准、统一的IT架构,消除割裂和信息孤岛,并且简化大规模IT部署和运维的复杂程度,而这些都是大数据分析系统建设的前提。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29