京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据打造“三共”社会治理格局
近些年来,社会变迁使得我国社会治理创新面临多重挑战,大数据思维可以促进整体性治理、精准化治理和参与式治理,提升我国社会治理的水平。我国各级政府的治理手段越来越依靠以云端存储为载体的大数据平台,民众生活也越来越依赖以大数据分析为基础的智慧化终端,大数据平台的建构越来越成为社会治理必不可少的一环。政府要不断增强大数据在创新社会治理方面的优越性,通过建构多种模式的大数据社会治理平台加以实现。
其一,需求导向模式。即从“用户”出发来构建大数据治理平台,“用户”即普通民众。十九大报告指出,中国特色社会主义进入新时代,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾。百姓美好生活需求是什么、民众的痛点在哪里,成为大数据参与社会治理的前提。获取“用户”需求,仍需要诸如智库等第三方社会主体通过科学的方法来收集,并长期跟踪获得不断变化的需求,为大数据社会平台提供准确的需求信息。获知用户需求后,政府和市场联手搭建大数据社会治理平台,开发符合民众需求的产品和服务。
其二,政绩评估模式。在当前我国行政体制的运转模式下,社会治理的绩效在相当程度上应体现为政府绩效,要杜绝“唯GDP论”的考核方式,将大数据平台的搭建纳入干部考核范围,敦促政府寻求建立科学、高效、易用的大数据平台。目前较为流行的是BOO(Building-Owning-Operation)模式,即各级政府根据当地情况提出建设要求,大数据公司依托专业技术完成平台设计,社会主体按照实际需求进行运营评估。在这种模式下,政府不投入人力、不干预运营、不主导评估、不获得产品所有权,仅需为交付的产品买单而获得使用权,不仅节省人力物力,而且让专业人员运营平台更保证了数据的真实性。
其三,市场运营模式。构建大数据平台是一个共建共治共享的工程,它的建设成败在于社会是否有活力,市场是否有热情。在市场运营模式中,政府和社会主体分别提出需求,通过大数据公司的市场化创建与运营,调动市场主体的积极性,促进供需方进行公平交易,为顶层制度设计和基层社会治理提供保证,实现收支平衡的大数据平台常态化运转。例如目前走在互联网技术创新前沿的BAT(百度、阿里巴巴、腾讯)等大型互联网企业正立足既有资源再创新,利用企业自身力量推出大数据的治理平台,推动政务服务便利化。
目前我国大数据推动社会治理创新还刚刚起步,对社会治理创新未能发挥真正的引导作用。而大数据的开放精准运用,必定会将社会引向共治共享。这需要突破以下瓶颈:
打破“数据孤岛”,完善大数据基础建设,由政府、市场和社会多主体共建大数据治理平台。由于收集技术和制度体系不健全,我国目前政府数据的调查、编码和存储的科学程度并不高;政府部门条块分割,形成“数据孤岛”,许多政府公共信息仍处于零散、分割、封闭状态;政府主导建立大数据治理平台缺乏其他主体参与,完全依靠政府力量往往难以完成或者效率不高。此外,大数据前提是统一、连接和共享。政府部门之间要摒弃“地方保护主义”和“自我保护主义”,通过规范政府数据采集的标准、建设统一的政府大数据中心,推进公共数据开放和基础数据资源跨部门、跨区域共享,优先推动信用、交通、医疗、卫生、就业等领域数据向社会开放。除了打通政府各个部门和条块,还需要政府、市场及社会的共同参与构建大数据治理平台。目前以BAT为代表的互联网巨头成为收集大数据的先头兵。社会民众也在生产大量数据,如社区居民通过互联网互动就是大数据的生成过程。因此要推动政府、企业和社会信息资源共建共享和开发利用,形成优势互补、多元参与、开放竞争的发展格局。
运用大数据思维,深入挖掘大数据,多方低成本使用此平台的大数据库及分析成果推进社会治理。“大数据”真实价值隐藏于各种各样、毫无规则的数据之下,要发掘数据背后的价值并真正加以利用,才是大数据推动社会治理创新的关键。建立大数据社会治理平台仍是第一步,不解决好应用和服务的问题,重金打造的开放大数据平台很容易“空心化”,难以对社会治理和社会福祉产生应有的支持。从大数据社会治理平台上,政府、市场和社会等各类社会治理主体可以低成本地通过获取、存储、管理、分析等手段,将具有海量规模的大数据变成活数据,并广泛应用于社会治理领域,服务不同社会群体。
全面提升共享意识,助力治理能力升级,引导由此形成的福利增值和精神归属。大数据的平等、开放和共享,与社会治理共享共融的本质有共通之处,政府利用大数据的契机,在全社会形成共享的精神:引导各类社会主体整合和开放数据,形成政府信息与社会信息交互融合的大数据治理平台,构建民主开放的社会氛围;引导基层民众参与社会协商、社区自治,促进政府与社会之间的协同和合作;引导社会和民众尊重规则、秩序、信用等,培育全社会的公共文明和契约精神
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15