
用大数据打造“三共”社会治理格局
近些年来,社会变迁使得我国社会治理创新面临多重挑战,大数据思维可以促进整体性治理、精准化治理和参与式治理,提升我国社会治理的水平。我国各级政府的治理手段越来越依靠以云端存储为载体的大数据平台,民众生活也越来越依赖以大数据分析为基础的智慧化终端,大数据平台的建构越来越成为社会治理必不可少的一环。政府要不断增强大数据在创新社会治理方面的优越性,通过建构多种模式的大数据社会治理平台加以实现。
其一,需求导向模式。即从“用户”出发来构建大数据治理平台,“用户”即普通民众。十九大报告指出,中国特色社会主义进入新时代,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾。百姓美好生活需求是什么、民众的痛点在哪里,成为大数据参与社会治理的前提。获取“用户”需求,仍需要诸如智库等第三方社会主体通过科学的方法来收集,并长期跟踪获得不断变化的需求,为大数据社会平台提供准确的需求信息。获知用户需求后,政府和市场联手搭建大数据社会治理平台,开发符合民众需求的产品和服务。
其二,政绩评估模式。在当前我国行政体制的运转模式下,社会治理的绩效在相当程度上应体现为政府绩效,要杜绝“唯GDP论”的考核方式,将大数据平台的搭建纳入干部考核范围,敦促政府寻求建立科学、高效、易用的大数据平台。目前较为流行的是BOO(Building-Owning-Operation)模式,即各级政府根据当地情况提出建设要求,大数据公司依托专业技术完成平台设计,社会主体按照实际需求进行运营评估。在这种模式下,政府不投入人力、不干预运营、不主导评估、不获得产品所有权,仅需为交付的产品买单而获得使用权,不仅节省人力物力,而且让专业人员运营平台更保证了数据的真实性。
其三,市场运营模式。构建大数据平台是一个共建共治共享的工程,它的建设成败在于社会是否有活力,市场是否有热情。在市场运营模式中,政府和社会主体分别提出需求,通过大数据公司的市场化创建与运营,调动市场主体的积极性,促进供需方进行公平交易,为顶层制度设计和基层社会治理提供保证,实现收支平衡的大数据平台常态化运转。例如目前走在互联网技术创新前沿的BAT(百度、阿里巴巴、腾讯)等大型互联网企业正立足既有资源再创新,利用企业自身力量推出大数据的治理平台,推动政务服务便利化。
目前我国大数据推动社会治理创新还刚刚起步,对社会治理创新未能发挥真正的引导作用。而大数据的开放精准运用,必定会将社会引向共治共享。这需要突破以下瓶颈:
打破“数据孤岛”,完善大数据基础建设,由政府、市场和社会多主体共建大数据治理平台。由于收集技术和制度体系不健全,我国目前政府数据的调查、编码和存储的科学程度并不高;政府部门条块分割,形成“数据孤岛”,许多政府公共信息仍处于零散、分割、封闭状态;政府主导建立大数据治理平台缺乏其他主体参与,完全依靠政府力量往往难以完成或者效率不高。此外,大数据前提是统一、连接和共享。政府部门之间要摒弃“地方保护主义”和“自我保护主义”,通过规范政府数据采集的标准、建设统一的政府大数据中心,推进公共数据开放和基础数据资源跨部门、跨区域共享,优先推动信用、交通、医疗、卫生、就业等领域数据向社会开放。除了打通政府各个部门和条块,还需要政府、市场及社会的共同参与构建大数据治理平台。目前以BAT为代表的互联网巨头成为收集大数据的先头兵。社会民众也在生产大量数据,如社区居民通过互联网互动就是大数据的生成过程。因此要推动政府、企业和社会信息资源共建共享和开发利用,形成优势互补、多元参与、开放竞争的发展格局。
运用大数据思维,深入挖掘大数据,多方低成本使用此平台的大数据库及分析成果推进社会治理。“大数据”真实价值隐藏于各种各样、毫无规则的数据之下,要发掘数据背后的价值并真正加以利用,才是大数据推动社会治理创新的关键。建立大数据社会治理平台仍是第一步,不解决好应用和服务的问题,重金打造的开放大数据平台很容易“空心化”,难以对社会治理和社会福祉产生应有的支持。从大数据社会治理平台上,政府、市场和社会等各类社会治理主体可以低成本地通过获取、存储、管理、分析等手段,将具有海量规模的大数据变成活数据,并广泛应用于社会治理领域,服务不同社会群体。
全面提升共享意识,助力治理能力升级,引导由此形成的福利增值和精神归属。大数据的平等、开放和共享,与社会治理共享共融的本质有共通之处,政府利用大数据的契机,在全社会形成共享的精神:引导各类社会主体整合和开放数据,形成政府信息与社会信息交互融合的大数据治理平台,构建民主开放的社会氛围;引导基层民众参与社会协商、社区自治,促进政府与社会之间的协同和合作;引导社会和民众尊重规则、秩序、信用等,培育全社会的公共文明和契约精神
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29