
栈和队列数据结构的基本概念及其相关的Python实现
先来回顾一下栈和队列的基本概念:
相同点:从"数据结构"的角度看,它们都是线性结构,即数据元素之间的关系相同。
不同点:栈(Stack)是限定只能在表的一端进行插入和删除操作的线性表。 队列(Queue)是限定只能在表的一端进行插入和在另一端进行删除操作的线性表。它们是完全不同的数据类型。除了它们各自的基本操作集不同外,主要区别是对插入和删除操作的"限定"。
栈必须按"后进先出"的规则进行操作:比如说,小学老师批改学生的作业,如果不打乱作业本的顺序的话,那么老师批改的第一份作业一定是最后那名同学交的那份作业,如果把所有作业本看作是一个栈中的元素,那么最后一个同学交的作业本就是栈顶元素,而第一个同学交的,也就是最低端的作业本,就是栈底元素,这就是对栈的读取规则。
而队列必须按"先进先出"的规则进行操作:打个比方,一些人去银行办理业务,一定是先去排队的最先得到服务,当然他也是第一个走出银行的(假设这些人都在一个窗口排队)。如果把所有这些等候服务的人看作是队的元素,第一个人就是对头元素,相应的,最后一个人就是队尾元素。这是队的读取规则。
用Python实现栈,这是Python核心编程里的一个例子:
'#!/usr/bin/env python
#定义一个列表来模拟栈
stack = []
#进栈,调用列表的append()函数加到列表的末尾,strip()没有参数是去掉首尾的空格
def pushit():
stack.append(raw_input('Enter new string: ').strip())
#出栈,用到了pop()函数
def popit():
if len(stack) == 0:
print 'Cannot pop from an empty stack!'
else:
print 'Removed [', stack.pop(), ']'
#编历栈
def viewstack():
print stack
#CMDs是字典的使用
CMDs = {'u': pushit, 'o': popit, 'v': viewstack}
#pr为提示字符
def showmenu():
pr = """
p(U)sh
p(O)p
(V)iew
(Q)uit
Enter choice: """
while True:
while True:
try:
#先用strip()去掉空格,再把第一个字符转换成小写的
choice = raw_input(pr).strip()[0].lower()
except (EOFError, KeyboardInterrupt, IndexError):
choice = 'q'
print '\nYou picked: [%s]' % choice
if choice not in 'uovq':
print 'Invalid option, try again'
else:
break
#CMDs[]根据输入的choice从字典中对应相应的value,比如说输入u,从字典中得到value为pushit,执行pushit()进栈操作
if choice == 'q':
break
CMDs[choice]()
#判断是否是从本文件进入,而不是被调用
if __name__ == '__main__':
showmenu()
用Python实现队列:
#!/usr/bin/env python
queue = []
def enQ():
queue.append(raw_input('Enter new string: ').strip())
#调用list的列表的pop()函数.pop(0)为列表的第一个元素
def deQ():
if len(queue) == 0:
print 'Cannot pop from an empty queue!'
else:
print 'Removed [', queue.pop(0) ,']'
def viewQ():
print queue
CMDs = {'e': enQ, 'd': deQ, 'v': viewQ}
def showmenu():
pr = """
(E)nqueue
(D)equeue
(V)iew
(Q)uit
Enter choice: """
while True:
while True:
try:
choice = raw_input(pr).strip()[0].lower()
except (EOFError, KeyboardInterrupt, IndexError):
choice = 'q'
print '\nYou picked: [%s]' % choice
if choice not in 'devq':
print 'Invalid option, try again'
else:
break
if choice == 'q':
break
CMDs[choice]()
if __name__ == '__main__':
showmenu()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28