
大数据也该找个归宿
男大当婚女大当嫁,数据大了也该找个归宿。有人说大数据是云计算的掌上明珠,堪称位居公主之位。虽说皇帝的女儿不愁嫁,但大数据真不如虚拟化萝莉畅销,大家都在热议大数据,一旦要谈婚论嫁,很多人似乎都患上了结婚恐惧症。别怀疑大数据魅力不足,因为大数据虽然让人浮想联翩,但大家却对大数据的洞房花烛夜充满狐疑。
刚刚过去的2012年真是大数据的花季之年,提亲媒婆似乎踏破了每个数据中心的门槛,大家都对大数据产生了无限的好奇和遐想。
大数据的定义已经不是问题,四个“V”的特征就好比四颗美人痣一样被大家广泛接受,大数据可以产生大价值的论断也逐渐改变着大家的思维,只是这个大价值怎么和自己联系起来呢?很多数据中心还是没有明确的答案,似乎只有互联网、电商等小子正乐享大数据的温柔。大数据到底怎样才能和企业数据中心创造一段美丽的佳话呢?
IDC预测接下去的10年数据量将会成长50倍,而其中非结构化数据将占到90%以上。不仅仅是数据量的增加让我们面临存储、检索等一系列的挑战,非结构化数据也让传统的RDBMS束手无策。同时,数据的生命周期也正发生着革命性变化,正在从传统的CRUD(Create-Read-Update-Delete)走向CRAP(Create-Read-Append-Process),大量的数据会从产生就不断积聚、添加到处理,从而大数据在任何一个行业都会急剧扩散、蔓延,不以我们的意志为转移。当然,对数据的处理速度也提出了更高要求,传统的商务智能(BI)可能只要每周、每月甚至每年出几次报告,而现在日益加剧的商业竞争让每个企业都希望能随时看到报表和结果数据,这真是一个既要马儿跑得快又要马儿不吃草或少吃草的时代。这就是快数据(FastData),是大数据的贴身丫鬟,考虑迎娶大数据可不能忘记快数据。
云计算让深藏互联网闺房的大数据第一次走进公众的视野,但很多企业数据中心却被互联网极客的某些论断吓退,比如前些日子微博上有人热炒:一个工厂过去十年的数据可能都比不上淘宝一天的数据量,所以制造业根本没有大数据。到底大数据是谁的菜呢?难道和我们很多企业数据中心都没有缘分吗?其实,大数据就在我们身边,我们发邮件、购物、上网搜索资料等的行为记录就是大数据;工厂机器的GPS数据、维修记录等也是大数据,产品销售记录、客户行为习惯资料等也是大数据;矿山、气象等资料也是大数据;平安城市物联网更是大数据。实际大数据无处不在,有人说软件正在吞噬世界,我想说数据也在淹没世界,每个数据中心都应该考虑好迎娶大数据。
Unix服务器、企业级存储、网络、安全、RDBMS是我们常用的五件套来应对数据的存储、管理等挑战,但今天传统五件套已经没法满足大数据的需要,不是大数据太骄奢,而是大数据真需要新嫁妆才能成为巧媳妇,那迎娶大数据需要什么新嫁妆呢?
首先,Unix服务器/企业级存储都将随云而去。Unix服务器/企业级存储曾是任何企业应用的基础平台,但随着互联网之风的盛行,Unix服务器/企业级存储高高在上的价格和孤芳自赏的品行越来越不能为大家接受,x86服务器/廉价云存储开始大行其道,成为云端应用的基石,无论是大数据还是快数据,都是x86平台/廉价云存储的粉丝,这个嫁妆绝对不能少;第二,网络和安全也随云而新,软件定义的网络SDN这股清风吹醒了传统的网络界,云安全也提上了任何云项目的重要议程。没有宽阔的胸堂(SDN)和坚强的臂膀,怎么能呵护大数据这个娇娘?因此,SDN和云安全也不能少;最后,RDBMS老骥伏枥不能相忘。今天确实仍是结构化数据处理的中坚,但要降服云端挑战,即使是老将,也要配备新的盔甲,数据库即服务和内存数据库将成为其新战袍。
另外,非结构化的领地要交给Hadoop等新一代的战将来打理,还要有新的分析工具配备上才能打赢现代化的战争,保护好数据中心的新媳妇。当然,新的分析工具要根据不同的需求进行定制开发,这也为国内的IT公司提供了一片新的战场。
别让大数据成为剩数据,勇敢挺起你的胸膛,对大数据大胆说出你的爱,相信大数据定将迫不及待地投入你的怀抱,你也将从此享受大数据的温柔梦乡。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29