
大数据助推金融业发展
专家表示,对于金融行业来说,尤其是以银行、保险为主的金融行业都是非常注重数据应用的,很多企业已经在利用大数据去服务其风险管理、客户营销和运营管理等工作。大数据未来将成为全球金融业竞争的主要“阵地”之一。对大数据的应用能力已经成为金融企业的核心竞争力,未来有竞争力的金融企业一定是有深厚大数据文化的企业。
今年《政府工作报告》明确提出要“发展壮大新动能。做大做强新兴产业集群,实施大数据发展行动”。近年来,以信息通信技术的创新为基础,互联网、大数据和人工智能等蓬勃发展,新的经济形态展现出强劲的生命力。接受《金融时报》记者专访的毕马威中国大数据团队学科带头人魏秋萍博士表示,对于金融行业来说,尤其是以银行、保险为主的金融行业都是非常注重数据应用的,很多企业已经在利用大数据去服务其风险管理、客户营销和运营管理等工作。
金融大数据值得关注
魏秋萍表示,金融行业本身是一个自带很大流量的行业。比如一个规模较大的银行,都拥有海量的客户。银行可以利用大数据技术,针对不同的客户群体制定不同的个性化服务方案,可以创建出很多不同的场景。同时,银行拥有很多的数据维度,这些数据项又比一般的网络行为大数据拥有更高的价值密度,可以发挥很大的业务价值。因此,金融行业充分利用自己的流量、数据,有效结合外部数据,再配套先进的技术和理念,必然可以成为一个生态体系中的核心组织。
大数据已经被广受关注,但到底什么是大数据,并没有一个被大家普遍认可的定义。魏秋萍认为,要认识大数据,可以从数据和技术两大层面来看。在大数据这个热词没有出现之前,金融行业早就开始了商务智能分析和数据挖掘,不过这时被分析的数据往往是企业内部的结构化数据。目前,金融企业分析的数据已经不再拘泥于此,而是大大拓宽了数据的广度,除了结构化数据外,也会根据实际的分析需要来引入非结构化数据,同时也会结合企业内部数据和企业外部数据来开展分析。在技术层面,也有了很大的变革,包括存储能力、计算能力和算法种类等,都有长足的进步。在10多年前做数据挖掘的时候,往往由于样本量庞大需要做采样技术,现在有了高性能存储和内存计算等技术的更新,采样基本不再是必需的了。
魏秋萍预计,大数据未来将成为全球金融业竞争的主要“阵地”之一。与互联网企业相比,虽然金融行业践行大数据战略的起步要晚了一些,但是金融行业利用大数据的进程也发展得很快。对大数据的应用能力,已经成为金融企业的核心竞争力,未来有竞争力的金融企业一定是有深厚大数据文化的企业。大数据提供了全新的沟通渠道和客户经营手段,可以加深企业和客户的互动,更及时精准地洞察客户。大数据也可以帮助金融企业滋生新型的金融业态参与市场竞争,用大数据来武装自己的金融企业未来一定是某个生态链中的关键组件。
风控需同步跟上
魏秋萍表示,应用大数据必须要重视数据质量和技术创新。举例来说,把大数据应用于风险控制是金融业应用大数据最典型的场景之一。在这一场景的应用中,有以下两点必须注意:一是对于数据的整合和数据的治理。风控是一个复杂的过程,要利用数据对风险进行穿透式管控,必须实现用真实的数据再现业务流程,因此,数据的可获得性和数据质量非常关键。二是先进技术的应用和创新。风控是魔高一尺道高一丈的游戏,“小偷”的伎俩层出不穷,作为“警察”的风控必须要有不断创新的能力,不断优化风控的技术。她还表示,从大数据风控技术的角度看,国内和国际的差异并不大,中国也走在了技术的前沿。但是,国外的金融企业对创新技术的容错会比国内好,他们有一些机制来鼓励创新技术的试错。这一点值得国内企业学习。
魏秋萍还认为,应用大数据的时候,数据安全也要同步跟上。保障数据安全的方法主要是三大手段:第一,需要依靠健全的法律制度来保障和约束数据交易的买卖双方;第二,需要加强数据买卖双方的道德约束;第三,需要通过安全技术来保障数据的安全。
金融企业应用大数据是一个逐步发展的过程,大数据的价值释放也必然是循序渐进的。企业内部一致的大数据理念和数据驱动决策的文化,也是大数据助推金融企业发展的保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23