京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中的线性代数
线性代数作为数学中的一个重要的分支,广发应用在科学与工程中。掌握好线性代数对于理解和从事机器学习算法相关的工作是很有必要的,尤其是对于深度学习而言。因此,在开始介绍深度学习之前,先集中探讨一些必备的线性代数知识。
2.1 标量,向量,矩阵和张量
标量(scalar):一个标量就是一个单独的数。用斜体表示标量,如s∈R
.
向量(vector):一个向量是一列数,我们用粗体的小写名称表示向量。比如x
,将向量x
写成方括号包含的纵柱:
矩阵(matrix):矩阵是二维数组,我们通常赋予矩阵粗体大写变量名称,比如A。如果一个矩阵高度是m,宽度是n,那么说A∈Rm×n。一个矩阵可以表示如下:
张量(tensor):某些情况下,我们会讨论不止维坐标的数组。如果一组数组中的元素分布在若干维坐标的规则网络中,就将其称为张量。用A表示,如张量中坐标为(i,j,k)的元素记作Ai,j,k。
转置(transpose):矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线称为主对角线(main diagonal)。将矩阵A
的转置表示为A⊤
。定义如下:
A=⎡⎣⎢x11x21x31x12x22x32⎤⎦⎥⟹A⊤=[x11x21x21x22x31x32]
2.2 矩阵和向量相乘
矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵A
和B的矩阵乘积(matrix product)是第三个矩阵C。矩阵乘法中A的列必须和B的行数相同。即如果矩阵A的形状是m×n,矩阵B的形状是n×p,那么矩阵C的形状就是m×p
。即
具体的地,其中的乘法操作定义为
矩阵乘积服从分配律
矩阵乘积也服从结合律
注意:矩阵乘积没有交换律
点积(dot product)两个相同维数的向量x
和y的点积可看作是矩阵乘积x⊤y
矩阵乘积的转置
利用向量的乘积是标量,标量的转置是自身的事实,我们可以证明(10)式:
线性方程组
Ax=b
2.3 单位矩阵和逆矩阵
线性代数中提供了矩阵逆(matrix inverse)的工具,使得我们能够解析地求解(11)中的A
.
单位矩阵(identity matrix):任意向量与单位矩阵相乘都不会改变。我们将保持n
维向量不变地单位矩阵记作为In,形式上In∈Rn×n
,
矩阵A的矩阵逆被记作A−1,被定义为如下形式:
(11)式方程组的求解:
方程组的解取决于能否找到一个逆矩阵A−1。接下来讨论逆矩阵A−1的存在的条件。
2.4 线性相关和生成子空间
如果逆矩阵A−1
存在,那么(11)式肯定对于每一个向量b恰好存在一个解。分析方程有多少个解,我们可以看成是A
的列向量的线性组合(linear combination)。
形式上,某个集合中向量的线性组合,是指每个向量乘以对应系数之后的和,即
一组向量的生成空间(span)是原始向量线性组合后所能抵达的点的集合。
线性无关(linearly independent): 如果一组向量中的任意一个向量都不能表示成其他向量的线性组合,那么这组向量被称之为线性无关。
要想使矩阵可逆,首先必须矩阵是一个方阵(square),即m=n
,其次,所有的列向量都是线性无关的。
一个列向量线性相关的方阵被称为奇异的(singular)。
2.5 范数
有时候我们需要衡量一个向量的大小,在机器学习中,我们使用称为范数(norm)的函数来衡量矩阵大小,形式上,Lp
范数如下:
其中p∈R,p≥1。
范数是将向量映射到非负值的函数。直观上来说,向量x
的范数就是衡量从原点到x
的举例。更严格来说,范数满足下列性质的函数:
当p=2
时,L2被称作欧几里得范数(Euclidean norm)。它表示从原点出发到向量x确定的点的欧几里得距离。平方L2范数常被用来衡量向量的大小,因为它便于求导计算(如对向量中每个元素的导数只取决于对应的元素,但是它也有缺陷,即它在原点附近增长得十分缓慢),可以简单用点积x⊤x来计算。
max 范数(max norm):这个范数表示向量中具有最大幅度得元素的绝对值,用L∞
范数表示,期形式为:
x⊤y=||x||2||y||2cosθ
2.6 特殊类型的矩阵和向量
对角矩阵(diagonal matrix)只在主对角线上含有非零元素,其它位置都是零。矩阵D
是对角矩阵,当且仅当∀i≠j,Di,j=0,用diag(v)表示一个对角元素由向量v中元素给定的对角矩阵。
对称(symmetric) 矩阵是任意转置和自己相等的矩阵:
单位向量(unit vector)是具有单位范数(unit norm)的向量:
正交矩阵(orthonormal matrix)是指行向量是标准正交的,列向量是标准正交的方阵:
所以正交矩阵受到关注是因为求逆计算代价小。需要注意正交矩阵的定义。反直觉地,正交矩阵的行向量不仅是正交的,还是标准正交的。对于行向量或列向量互相正交但不是标准正交的矩阵没有对应的专有术语。
2.7 特征分解
许多数学对象可以通过将它们分解成多个组成部分,或者找到它们的一些属性而被更好地理解,这些属性是通用的,而不是由我们选择表示它们的方式引起的。就像我们可以通过分解质因数来发现一些关于整数的真实性质,我们也可以通过分解矩阵来获取一些矩阵表示成数组元素时不明显的函数性质。
特征分解(eigendecomposition)是使用最广的矩阵分解之一,即我们将矩阵分解成一组特征向量和特征值。
方阵A
的特征向量(eigenvector)是指与A相乘后相当于对该向量进行缩放的非零向量v:
如果v
是A的特征向量,那么任何放缩后的向量sv(s∈R,s≠0)也是A的特征向量并且其与\bf v 有相同的特征值。所以我们通常只考虑单位特征向量。
假设矩阵A
有n个线性无关的特征向量{v(1),v(2),...,v(n)},对应着的特征值{λ1,λ2,...,λn}不是每一个矩阵都可以分解成特征值和特征向量,在某些情况下,特征分解会涉及到复数,而非实数。在本书的机器学习学习中,我们只讨论一类简单分解的矩阵。具体就是,每个实对称矩阵都可以分解为实特征向量和实特征值:
2.8 迹运算
迹运算返回的是矩阵对角元素的和:
标量的迹是它本身:a=Tr(a)。
2.9 行列式
行列式,记作det(A)
,是一个将方阵A映射到实数的函数。行列式等于矩阵特征值的乘积。行列式的绝对值可以被认为是衡量矩阵相乘后空间扩大或者缩小了多少。如果行列式是0, 那么空间至少沿着某一维完全收缩了,使其失去了所有的体积。如果行列式是1, 那么矩阵相乘没有改变空间体积。
总结
以上是在机器学习过程中必须了解和掌握的有关线性代数的知识
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06