R语言-数组到矩阵的转换
1、问题:
有一个很大的三维数组,需要转换为一个矩阵,是否能在R中用循环语句或者其他方式实现?
三维数组(3, 2, 3)类似下面形式:
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
希望转换后的矩阵(6, 3)如下:
1 7 13
4 10 16
2 8 14
5 11 17
3 9 15
6 12 18
2、解答:
基于问题数据的特点,可直接用行组合就可以,避免使用循环计算,在进行大数据处理时可显著提高处理效率。
可以看到最终数据呈横向扩展,而与第3维数据的个数无关。
1、假定有数据:
> a <- array(1:18, dim=c(3,2,3))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
2、合成后的矩阵为:
>b<- rbind(a[1,,],a[2,,],a[3,,])
一句话搞定。
3、查看结果
> b
[,1] [,2] [,3]
[1,] 1 7 13
[2,] 4 10 16
[3,] 2 8 14
[4,] 5 11 17
[5,] 3 9 15
[6,] 6 12 18
4、使用更多数据测试:
> a <- array(1:24, dim=c(3,2,4))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
, , 4
[,1] [,2]
[1,] 19 22
[2,] 20 23
[3,] 21 24
> b<-rbind(a[1,,],a[2,,],a[3,,])
> b
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 4 10 16 22
[3,] 2 8 14 20
[4,] 5 11 17 23
[5,] 3 9 15 21
[6,] 6 12 18 24
3、另外的方法
1、apply()
apply(x, 3, t)
apply()函数,可将一个任意函数“应用”到矩阵、数组、数据框的任何维度上。apply函数的使用格式为:
apply(x, MARGIN, FUN, ...)
其中,x为数据对象,MARGIN是维度的下标,FUN是由你指定的函数,而...则包括了任何想传递给FUN的参数。在矩阵或数据框中,MARGIN=1表示行,MARGIN=2表示列。
2、aperm()
(1)aperm() 函数,Transpose an array by permuting its dimensions and optionally resizingit.
Transpose变换顺序
permute 序列改变,重新排列一个数组
该函数意即改变数组的维度顺序,维度1,2,3按不同顺序进行变换。
(2)array()函数,用法array(data = NA, dim = length(data), dimnames = NULL)
array(aperm(x, c(2,1,3)), c(6,3))
将数组x维度改变(1->2,2->1,3->3)后:
aperm(x, c(2,1,3))
再变换成新的数组:
array(aperm(x, c(2,1,3)), c(6,3))
注意:
其实这样做有点多余,可直接应用数组变换:
array(x, c(6,3))
结果与上述方法结果一样。
如果是三维数量是4,则公式为:
array(x,c(6,4))
依此类推。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03