
R语言-数组到矩阵的转换
1、问题:
有一个很大的三维数组,需要转换为一个矩阵,是否能在R中用循环语句或者其他方式实现?
三维数组(3, 2, 3)类似下面形式:
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
希望转换后的矩阵(6, 3)如下:
1 7 13
4 10 16
2 8 14
5 11 17
3 9 15
6 12 18
2、解答:
基于问题数据的特点,可直接用行组合就可以,避免使用循环计算,在进行大数据处理时可显著提高处理效率。
可以看到最终数据呈横向扩展,而与第3维数据的个数无关。
1、假定有数据:
> a <- array(1:18, dim=c(3,2,3))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
2、合成后的矩阵为:
>b<- rbind(a[1,,],a[2,,],a[3,,])
一句话搞定。
3、查看结果
> b
[,1] [,2] [,3]
[1,] 1 7 13
[2,] 4 10 16
[3,] 2 8 14
[4,] 5 11 17
[5,] 3 9 15
[6,] 6 12 18
4、使用更多数据测试:
> a <- array(1:24, dim=c(3,2,4))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
, , 4
[,1] [,2]
[1,] 19 22
[2,] 20 23
[3,] 21 24
> b<-rbind(a[1,,],a[2,,],a[3,,])
> b
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 4 10 16 22
[3,] 2 8 14 20
[4,] 5 11 17 23
[5,] 3 9 15 21
[6,] 6 12 18 24
3、另外的方法
1、apply()
apply(x, 3, t)
apply()函数,可将一个任意函数“应用”到矩阵、数组、数据框的任何维度上。apply函数的使用格式为:
apply(x, MARGIN, FUN, ...)
其中,x为数据对象,MARGIN是维度的下标,FUN是由你指定的函数,而...则包括了任何想传递给FUN的参数。在矩阵或数据框中,MARGIN=1表示行,MARGIN=2表示列。
2、aperm()
(1)aperm() 函数,Transpose an array by permuting its dimensions and optionally resizingit.
Transpose变换顺序
permute 序列改变,重新排列一个数组
该函数意即改变数组的维度顺序,维度1,2,3按不同顺序进行变换。
(2)array()函数,用法array(data = NA, dim = length(data), dimnames = NULL)
array(aperm(x, c(2,1,3)), c(6,3))
将数组x维度改变(1->2,2->1,3->3)后:
aperm(x, c(2,1,3))
再变换成新的数组:
array(aperm(x, c(2,1,3)), c(6,3))
注意:
其实这样做有点多余,可直接应用数组变换:
array(x, c(6,3))
结果与上述方法结果一样。
如果是三维数量是4,则公式为:
array(x,c(6,4))
依此类推。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18