京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在银行业三大应用重点
在香港,银行业是受高度监管的行业,并且由于竞争比大陆更为激烈,产品形态多样,所以银行运营方面的相关数据被充分分析和利用,客户的流失数据、资本金比率、存贷比等各种数据形成了银行日常管理的基础。
在香港银行业,对客户的了解程度决定了生意的成功率,银行不仅收集客户的风险承受能力、收入、工作背景、商业财务活动、理财习惯等相关数据来做分析,还通过物联网进一步了解客户的生活群体,他的朋友和伙伴之间的互动情况,校友会和其他相关社会资源的情况也被列为数据收集和分析的组成部分。
在详尽的客户数据基础上,传统的公开广告形式已不再受银行欢迎,在更偏向于基于对客户个人数据分析的更有针对性的营销模式,以提高营销效率。什么样的产品会引起客户兴趣,客户为何买,从什么渠道买,兴趣为何变化等各种信息中都能获得对营销的支持。银行不再雇一大群营销员去做扫街式的推销,而是由数据主导和推动的进行有的放矢的精准营销。建行亚洲甚至为此设置了一个确切科学的部门进行关于客户营销的各种数据分析,这个部门直接向行政总裁汇报,形成银行的决策支持基础。
处理客户的反馈也是大数据应用的重要方面,以往这些反馈内容虽然被记录下来,但由于不是规律的数据,所以很少被分析,现在利用大数据分析工具来分析客户反馈,用以改善往后的服务。
在银行的产品和渠道方面,由于客户的喜好经常变化,实时全面的数据分析可以帮助银行不断去改善和改变产品。在香港,为了应对竞争,银行往往做大量的数据分析,比如网上银行,建行亚洲设置了专业团队分香港析12个主要银行的网银产品和服务你对比。同时在产品、渠道、网点、客户增加的数量、产品销售和速度方面做详细的市场数据收集。
在客户服务方面,对客户提供个性化服务已成为业内共识,现在已进一步关注到用户体验上,由关注客户关系提升到关注客户满意度。通过客户数据分析,了解客户在不同生命阶段的生活模型。比如客户开始在社交网络上谈论跑车时,银行就根据这一数据为他提供买车方面的贷款优惠服务。不同的生活模型对应很多不同的销售类型,这种数据应用在很多行业被应用,但在银行业,由于客户数据收集全面,被应用得更广泛。银行可以通过数据分析了解客户的期望,比如在40岁之前期待建立自己的公司,银行就提供贷款。
在风险管控方面,银行收集客户正面和负面的信贷数据,作为对其进行信贷审批的依据,在香港已有第三方的数据公司可以提供这方面服务。客户每一张信用卡的审批通过背后,都有大量的数据分析来支持。银行通过第三方途径获得相关数据还有恐怖分子的黑名单、富人及未来之星的数据库,这些都成为信贷管理的数据分析基础。
简单总结大数据在银行的应用重点,一是要把大数据变成小数据,形成可分析处理的基础。另外是数据做了分析之后可以变成一个具体行动,行动才能创造成效,大数据的分析要变成一个业务上的改变,对业务模型做优化。最后就是大数据也是商业的一部分,一定不要等太久,要形成有立竿见影效果的项目,让管理层看到成效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22