
大数据在银行业三大应用重点
在香港,银行业是受高度监管的行业,并且由于竞争比大陆更为激烈,产品形态多样,所以银行运营方面的相关数据被充分分析和利用,客户的流失数据、资本金比率、存贷比等各种数据形成了银行日常管理的基础。
在香港银行业,对客户的了解程度决定了生意的成功率,银行不仅收集客户的风险承受能力、收入、工作背景、商业财务活动、理财习惯等相关数据来做分析,还通过物联网进一步了解客户的生活群体,他的朋友和伙伴之间的互动情况,校友会和其他相关社会资源的情况也被列为数据收集和分析的组成部分。
在详尽的客户数据基础上,传统的公开广告形式已不再受银行欢迎,在更偏向于基于对客户个人数据分析的更有针对性的营销模式,以提高营销效率。什么样的产品会引起客户兴趣,客户为何买,从什么渠道买,兴趣为何变化等各种信息中都能获得对营销的支持。银行不再雇一大群营销员去做扫街式的推销,而是由数据主导和推动的进行有的放矢的精准营销。建行亚洲甚至为此设置了一个确切科学的部门进行关于客户营销的各种数据分析,这个部门直接向行政总裁汇报,形成银行的决策支持基础。
处理客户的反馈也是大数据应用的重要方面,以往这些反馈内容虽然被记录下来,但由于不是规律的数据,所以很少被分析,现在利用大数据分析工具来分析客户反馈,用以改善往后的服务。
在银行的产品和渠道方面,由于客户的喜好经常变化,实时全面的数据分析可以帮助银行不断去改善和改变产品。在香港,为了应对竞争,银行往往做大量的数据分析,比如网上银行,建行亚洲设置了专业团队分香港析12个主要银行的网银产品和服务你对比。同时在产品、渠道、网点、客户增加的数量、产品销售和速度方面做详细的市场数据收集。
在客户服务方面,对客户提供个性化服务已成为业内共识,现在已进一步关注到用户体验上,由关注客户关系提升到关注客户满意度。通过客户数据分析,了解客户在不同生命阶段的生活模型。比如客户开始在社交网络上谈论跑车时,银行就根据这一数据为他提供买车方面的贷款优惠服务。不同的生活模型对应很多不同的销售类型,这种数据应用在很多行业被应用,但在银行业,由于客户数据收集全面,被应用得更广泛。银行可以通过数据分析了解客户的期望,比如在40岁之前期待建立自己的公司,银行就提供贷款。
在风险管控方面,银行收集客户正面和负面的信贷数据,作为对其进行信贷审批的依据,在香港已有第三方的数据公司可以提供这方面服务。客户每一张信用卡的审批通过背后,都有大量的数据分析来支持。银行通过第三方途径获得相关数据还有恐怖分子的黑名单、富人及未来之星的数据库,这些都成为信贷管理的数据分析基础。
简单总结大数据在银行的应用重点,一是要把大数据变成小数据,形成可分析处理的基础。另外是数据做了分析之后可以变成一个具体行动,行动才能创造成效,大数据的分析要变成一个业务上的改变,对业务模型做优化。最后就是大数据也是商业的一部分,一定不要等太久,要形成有立竿见影效果的项目,让管理层看到成效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29