京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python语言中函数的参数传递机制
python有两种对象,immutable 和mutable,前者如number,string,tuple,后者如dictionary,list,下面先来看两个例子。
例1:
>>> def func(a):
... print('id of a before changed:',id(a))
... a += 1
... print('id of a after changed:',id(a))
...
>>> a=1
>>> id(a)
29022864
>>> func(a)
('id of a before changed:', 29022864)
('id of a after changed:', 29022852)
>>> a,id(a)
(1, 29022864)
例2:
>>> def func(a):
... print('id of a before changed:',id(a))
... a.append(4)
... print('id of a after changed:',id(a))
...
>>> a = [1,2,3]
>>> id(a)
119580312
>>> func(a)
('id of a before changed:', 119580312)
('id of a after changed:', 119580312)
>>> a,id(a)
([1, 2, 3, 4], 119580312)
首先说明一点,python中的中所有数据都是object,object的有三个属性,identity,type,value。identity即其id,可以认为是其内存地址,上面的例子中使用python的build-in函数id()来获取其内存地址。type表示其类型,该属性决定了它的数据结构和其支持的操作。value,则其含有的数据。
在解释例子之前首先强调一点,python中,所有的参数传递都是pass by reference,即引用传递。
例1中代表了immutable类别的参数传递机制,传递的参数在函数返回后,是不会发生变化的。a是一个整型(可以通过type(a)来测试),即number类型,所以是immutable类别的。可以看到,a在传入函数处理以前,值为2,id为29022864,在传入函数但未经改变其值前,其id依然为29022864,所以验证了python中的参数传递确实是引用传递,但在a的值通过自身的平方改变后,我们发现,a 的id变为了29022852,即a这个名字已经代表了另外一个内存地址的对象。最后函数返回后,我们发现a的id依然是29022864,value也没有发生变化。
例2代表了mutable类别的参数传递机制,传递的参数在函数中的改变,在函数返回后依然保留。可以看到,a所代表的对象的id,始终没有发生变化,即value的改变是在全局的名字a所代表的对象上完成的。不同于例1中的例子,因为a所代表的id为29022864的对象,是immutable的,所以当发生值改变时,函数内部的名字a就指向了另一个id为29022852的对象,而当函数返回后,全局的名字a所指向的id为29022864的值依然是2,没有改变。
例3:
>>>
def func(a):
... print('id of a before changed:',id(a))
... a = [1,2,3,4]
... print('id of a after changed:',id(a))
...
>>> a = [1,2,3]
>>> id(a)
119580312
>>> func(a)
('id of a before changed:', 119580312)
('id of a after changed:', 119580356)
>>> a,id(a)
([1, 2, 3], 119580312)
例3的结果,显然与例2中我们的描述很不同。我们发现,当使用“a = [1,2,3,4]”对a所指代的对象进行值改变后,a的id发生了变化。最后函数返回,全局的a代表的对象并没有发生变化。其实问题出在python中“=”赋值操作上。统一的解释是:如果mutable类型对象在函数中的改变不是由“=”来完成,那么该对象在函数中的改变在函数返回后依然保留。如果改变由“=”完成,则不保留。
下面给出一些例子来说明“=”在python的作用,进而对上面的现象做一个统一的解释。
例4:
>>> a =1
>>> b =a
>>> id(a),id(b)
(29022864, 29022864)
>>> b =2
>>> a,b
(1, 2)
>>> id(a),id(b)
(29022864, 29022852)
例5:
>>> a= [1,2,3]
>>> b =a
>>> id(a),id(b)
(119580232, 119580232)
>>> b.append(4)
>>> a,b
([1, 2, 3, 4], [1, 2, 3, 4])
>>> id(a),id(b)
(119580232, 119580232)
例6:
>>> a= [1,2,3]
>>> b= a
>>> id(a),id(b)
(79824096, 79824096)
>>> b = [1,2,3,4]
>>> a,b
([1, 2, 3], [1, 2, 3, 4])
>>> id(a),id(b)
(79824096, 119580232)
例4,例5和例6,其实是模仿了函数参数传递的过程,函数参数传递的过程,就是进行类似"b=a"的操作,这里的b其实就相当于例1,例2和例3中的函数里的“a”。在python中,b,a指向了同一个对象,即进行“b=a”操作,若使用“=”操作改变b的值,python会直接新建一个对象,然后让b指向它。所以a的值不发生变化。
至此,python里的函数参数传递原理应该完整了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30