京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		Python语言中函数的参数传递机制
python有两种对象,immutable 和mutable,前者如number,string,tuple,后者如dictionary,list,下面先来看两个例子。
例1:
			>>> def func(a):
...     print('id of a before changed:',id(a))
...     a += 1
...     print('id of a after changed:',id(a))
... 
>>> a=1
>>> id(a)
29022864
>>> func(a)
('id of a before changed:', 29022864)
('id of a after changed:', 29022852)
		
			>>> a,id(a)
(1, 29022864)
		
			
		
例2:
			>>> def func(a):
...     print('id of a before changed:',id(a))
...     a.append(4)
...     print('id of a after changed:',id(a))
... 
>>> a = [1,2,3]
>>> id(a)
119580312
>>> func(a)
('id of a before changed:', 119580312)
('id of a after changed:', 119580312)
>>> a,id(a)
([1, 2, 3, 4], 119580312)
		
			
		
首先说明一点,python中的中所有数据都是object,object的有三个属性,identity,type,value。identity即其id,可以认为是其内存地址,上面的例子中使用python的build-in函数id()来获取其内存地址。type表示其类型,该属性决定了它的数据结构和其支持的操作。value,则其含有的数据。
在解释例子之前首先强调一点,python中,所有的参数传递都是pass by reference,即引用传递。
例1中代表了immutable类别的参数传递机制,传递的参数在函数返回后,是不会发生变化的。a是一个整型(可以通过type(a)来测试),即number类型,所以是immutable类别的。可以看到,a在传入函数处理以前,值为2,id为29022864,在传入函数但未经改变其值前,其id依然为29022864,所以验证了python中的参数传递确实是引用传递,但在a的值通过自身的平方改变后,我们发现,a 的id变为了29022852,即a这个名字已经代表了另外一个内存地址的对象。最后函数返回后,我们发现a的id依然是29022864,value也没有发生变化。
例2代表了mutable类别的参数传递机制,传递的参数在函数中的改变,在函数返回后依然保留。可以看到,a所代表的对象的id,始终没有发生变化,即value的改变是在全局的名字a所代表的对象上完成的。不同于例1中的例子,因为a所代表的id为29022864的对象,是immutable的,所以当发生值改变时,函数内部的名字a就指向了另一个id为29022852的对象,而当函数返回后,全局的名字a所指向的id为29022864的值依然是2,没有改变。
例3:
			>>>
 def func(a):
...     print('id of a before changed:',id(a))
...     a = [1,2,3,4]
...     print('id of a after changed:',id(a))
... 
>>> a = [1,2,3]
>>> id(a)
119580312
>>> func(a)
('id of a before changed:', 119580312)
('id of a after changed:', 119580356)
>>> a,id(a)
([1, 2, 3], 119580312)
		
			
		
例3的结果,显然与例2中我们的描述很不同。我们发现,当使用“a = [1,2,3,4]”对a所指代的对象进行值改变后,a的id发生了变化。最后函数返回,全局的a代表的对象并没有发生变化。其实问题出在python中“=”赋值操作上。统一的解释是:如果mutable类型对象在函数中的改变不是由“=”来完成,那么该对象在函数中的改变在函数返回后依然保留。如果改变由“=”完成,则不保留。
下面给出一些例子来说明“=”在python的作用,进而对上面的现象做一个统一的解释。
例4:
			>>> a =1
>>> b =a
>>> id(a),id(b)
(29022864, 29022864)
>>> b =2
>>> a,b
(1, 2)
>>> id(a),id(b)
(29022864, 29022852)
		
			
		
例5:
			>>> a= [1,2,3]
>>> b =a
>>> id(a),id(b)
(119580232, 119580232)
>>> b.append(4)
>>> a,b
([1, 2, 3, 4], [1, 2, 3, 4])
>>> id(a),id(b)
(119580232, 119580232)
		
			
		
例6:
			>>> a= [1,2,3]
>>> b= a
>>> id(a),id(b)
(79824096, 79824096)
>>> b = [1,2,3,4]
>>> a,b
([1, 2, 3], [1, 2, 3, 4])
>>> id(a),id(b)
(79824096, 119580232)
		
			
		
例4,例5和例6,其实是模仿了函数参数传递的过程,函数参数传递的过程,就是进行类似"b=a"的操作,这里的b其实就相当于例1,例2和例3中的函数里的“a”。在python中,b,a指向了同一个对象,即进行“b=a”操作,若使用“=”操作改变b的值,python会直接新建一个对象,然后让b指向它。所以a的值不发生变化。
至此,python里的函数参数传递原理应该完整了。
	
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27