
Python语言中函数的参数传递机制
python有两种对象,immutable 和mutable,前者如number,string,tuple,后者如dictionary,list,下面先来看两个例子。
例1:
>>> def func(a):
... print('id of a before changed:',id(a))
... a += 1
... print('id of a after changed:',id(a))
...
>>> a=1
>>> id(a)
29022864
>>> func(a)
('id of a before changed:', 29022864)
('id of a after changed:', 29022852)
>>> a,id(a)
(1, 29022864)
例2:
>>> def func(a):
... print('id of a before changed:',id(a))
... a.append(4)
... print('id of a after changed:',id(a))
...
>>> a = [1,2,3]
>>> id(a)
119580312
>>> func(a)
('id of a before changed:', 119580312)
('id of a after changed:', 119580312)
>>> a,id(a)
([1, 2, 3, 4], 119580312)
首先说明一点,python中的中所有数据都是object,object的有三个属性,identity,type,value。identity即其id,可以认为是其内存地址,上面的例子中使用python的build-in函数id()来获取其内存地址。type表示其类型,该属性决定了它的数据结构和其支持的操作。value,则其含有的数据。
在解释例子之前首先强调一点,python中,所有的参数传递都是pass by reference,即引用传递。
例1中代表了immutable类别的参数传递机制,传递的参数在函数返回后,是不会发生变化的。a是一个整型(可以通过type(a)来测试),即number类型,所以是immutable类别的。可以看到,a在传入函数处理以前,值为2,id为29022864,在传入函数但未经改变其值前,其id依然为29022864,所以验证了python中的参数传递确实是引用传递,但在a的值通过自身的平方改变后,我们发现,a 的id变为了29022852,即a这个名字已经代表了另外一个内存地址的对象。最后函数返回后,我们发现a的id依然是29022864,value也没有发生变化。
例2代表了mutable类别的参数传递机制,传递的参数在函数中的改变,在函数返回后依然保留。可以看到,a所代表的对象的id,始终没有发生变化,即value的改变是在全局的名字a所代表的对象上完成的。不同于例1中的例子,因为a所代表的id为29022864的对象,是immutable的,所以当发生值改变时,函数内部的名字a就指向了另一个id为29022852的对象,而当函数返回后,全局的名字a所指向的id为29022864的值依然是2,没有改变。
例3:
>>>
def func(a):
... print('id of a before changed:',id(a))
... a = [1,2,3,4]
... print('id of a after changed:',id(a))
...
>>> a = [1,2,3]
>>> id(a)
119580312
>>> func(a)
('id of a before changed:', 119580312)
('id of a after changed:', 119580356)
>>> a,id(a)
([1, 2, 3], 119580312)
例3的结果,显然与例2中我们的描述很不同。我们发现,当使用“a = [1,2,3,4]”对a所指代的对象进行值改变后,a的id发生了变化。最后函数返回,全局的a代表的对象并没有发生变化。其实问题出在python中“=”赋值操作上。统一的解释是:如果mutable类型对象在函数中的改变不是由“=”来完成,那么该对象在函数中的改变在函数返回后依然保留。如果改变由“=”完成,则不保留。
下面给出一些例子来说明“=”在python的作用,进而对上面的现象做一个统一的解释。
例4:
>>> a =1
>>> b =a
>>> id(a),id(b)
(29022864, 29022864)
>>> b =2
>>> a,b
(1, 2)
>>> id(a),id(b)
(29022864, 29022852)
例5:
>>> a= [1,2,3]
>>> b =a
>>> id(a),id(b)
(119580232, 119580232)
>>> b.append(4)
>>> a,b
([1, 2, 3, 4], [1, 2, 3, 4])
>>> id(a),id(b)
(119580232, 119580232)
例6:
>>> a= [1,2,3]
>>> b= a
>>> id(a),id(b)
(79824096, 79824096)
>>> b = [1,2,3,4]
>>> a,b
([1, 2, 3], [1, 2, 3, 4])
>>> id(a),id(b)
(79824096, 119580232)
例4,例5和例6,其实是模仿了函数参数传递的过程,函数参数传递的过程,就是进行类似"b=a"的操作,这里的b其实就相当于例1,例2和例3中的函数里的“a”。在python中,b,a指向了同一个对象,即进行“b=a”操作,若使用“=”操作改变b的值,python会直接新建一个对象,然后让b指向它。所以a的值不发生变化。
至此,python里的函数参数传递原理应该完整了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15