京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将推动零售业技术变革
建设强大的数据中台,实现线上线下数字化打通,重构“人、货场”,是新零售的重要内涵。业内人士指出,2018年将是大数据从技术阶段向应用阶段高速发展的一年,大数据未来在物联网、区块链、智慧城市、AR、VR、AI、语音识别等方面都值得关注,这在不久的将来或深刻改变零售业的未来。
线下零售大数据应用刚起步
近日高鑫零售公布年报,2017年实现营业收入1023.20亿元,同比增长1.9%;2017年净利润为30.20亿元,同比增长14.9%。这是阿里入住高鑫新零售的第一年,招商证券指出,虽然阿里入股高鑫在短期内并未给高鑫业绩带来大幅改善,但是阿里的互联网基因和大数据资源加速了高鑫的线上线下整合。
在阿里与高鑫的合作中,目前仍是线上大数据指导线下商品管理,大润发华东20个城市的167家门店上架了天猫超市百万件商品,这些商品由阿里大数据根据周边消费者喜好筛选商品,并由天猫供应链优化供货方案。招商证券指出,虽然这些商品销售状况有好有坏,但整体上调整了门店的经营体系和业务链路。
基于模式和技术优势,线上零售数据的采集和大数据技术的应用已相当成熟,相比之下,线下零售大数据技术的应用还处于起步阶段。中国连锁经营协会会长裴亮曾指出,大数据技术在零售业的应用还没有发挥出来,目前来看,零售企业不掌握大数据,如何与握有大数据的企业进行合作,共同开始大数据在零售业的应用,还处在探索的过程中。
从发展现状来看,线下零售应用大数据技术首先面临的技术难点是数据采集。专家指出,线下零售店由于技术限制和消费者更加碎片割裂的行为,很难根据消费者ID数据与商品销售、店铺库存、物流等数据进行打通连接,尤其消费者店铺行为偏好数据的获取。
这方面,同时拥有门店优势和互联网基因的零售企业将占据优势。苏宁易购向中国证券报记者表示,在苏宁易购云店内的已经开始全面打造线下门店客流数据分析的“苏宁北斗”系统。该产品的上线,标志着苏宁易购在门店端开始采用类似线上页面运营的流量运营逻辑,“从用户进店以及在门店内的动线变化,进行线上UV到四级页面浏览路径的分析,对门店商品布局、用户习惯分析将有巨大的帮助”。预计到2019年,苏宁易购将会把人脸识别系统和北斗系统相结合,使监测数据更加精准,并将为后期会员服务、会员运营的优化提供数据依据。
推动零售业技术变革
苏宁控股集团董事长张近东表示,2018年将是大数据从技术阶段向应用阶段高速发展的一年,“大数据未来在物联网、区块链、智慧城市、AR、VR、AI、语音识别等方面都值得关注,这在不久的将来或深刻改变零售业的未来”。
中国电子商务研究中心主任曹磊表示,过去数据只在销售端和营销端驱动,今后还将向商品端、供应链端、仓储物流乃至生产端来进行全方位驱动。过去商品和用户是零售商和电商最核心的资产,在大数据时代,大数据将成为他们最核心的资产。
基于对线上线下数据打通的重视,2017年国美落地蒲公英计划,完成国美在线、国美Plus、国美管家、国美海外购、国美酒窖整合成国美APP,连接线上线下,以互联网为基础、数据为核心,打造线上交易、线下体验的共享零售双平台。通过实施蒲公英计划,国美线上线下的供应链数据、交易数据、服务数据、会员数据全面打通,汇聚为国美的数据中台,形成大数据工厂。
在大数据的支持下,国美升级了后服务体系,推出“扬帆计划”,实现订单配送、安装服务、维修服务、客户服务全周期的可视化、标准化,打通厂家后台数据,首创保内维修一键预约功能。
从整个产业链来看,大数据的最高效应用将是从生产端开始就实现定制,对此,已有零售业开始布局。国美将大数据应用于供应链,用C2M反向定制、家生活品类和智能产品横向延展、驱动精准选品和营销,进而与第三方供应链形成补充,提升零售效率,满足消费者品质化、个性化、智能化的产品需求,促进品质升级,优化商品结构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17