京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的发展已经不能停下脚步
随着大数据时代的逐步发展,大数据的成果必将使广大用户受惠,使用户的行为或消费更有效率。
大数据概念提出和技术的应用,其实是信息大爆炸必须经历的技术进化,人们为了获取更丰富的数据,促进了计算机、互联网、物联网技术的飞速发展,而获取数据后,人们如何获取数据隐含的各种信息?如何更为深刻、全面的洞察数据隐含的内容?这些都为人类提升全面的洞察分析能力提供了前所未有的空间与潜力,当然,如此庞大的数据意味着更多的机会,提纯后的数据价值更大,意味着更有分析意义。而这些将成为从业人员的价值宝藏,通俗点说就是数据金矿,意味着财富,人们对海量数据的挖掘和使用,是促使行业增长、促使大众更多消费的手段,从而推动社会的不断前进。其实这是一种相互推进的关系,深刻、全面的洞察数据隐含内容后,用科技等手段去推动社会的快速发展,同时社会要更进一步发展则需要去更深层次的钻研大数据。
如此一来,大数据的发展已经不能停下脚步,它后面有一股强大的力量。
为什么互联网能够发展的如此迅速?矛盾的斗争性是事物发展的动力,人类社会不断向前发展,若与人类生活密切相关的互联网技术停滞不前,则会阻碍社会的进步与发展,说的通俗点就是时代的要求。安防行业的大数据时代也同于此理,它的发展速度能不能像互联网那样迅速,小编不敢妄论,但一定会飞一会儿。
面对大数据的存储、管理、分析,出现了一系列问题,那么未来的路又该如何走呢?
结合“云”“物联网”等技术
传统IT行业大数据技术的发展,对整个IT产业有着重大的促进作用,积极推进IT技术与安防技术的融合,充分发挥IT行业的技术优势,特别是大数据方面的技术积累,来解决各行业所面临的大数据挑战,推动各行业进入新的大数据时代是重要的一步。大数据概念提出的时候,从业者有狂欢的、有谨慎的、有反对的。但同时人类自己造就了数据,造就了数据的飞速发展,那么就需要去驾驭这些数据,用这些数据为人类服务,未来需要和和“云”、互联网等技术相辅相成,共同推动人类技术的发展和进步。
物联网的数据是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的数据有明显的颗粒性,其数据通常带有时间、位置、环境和行为等信息,通过统一物联网架构设计,将非结构化的数据变得结构化,不同系统之间不同结构的数据尽可能地统一,为决策做出重要的参考。
分布式存储
PB级数据的存储管理问题,这个问题主要通过分布式存储方案来解决。基于分布式存储、集中管理思路的、以及基于iSCSI技术的IPSAN来作为视频监控的存储解决方案,这个方案的主要特点包括:分布式存储,集中管理、基于iSCSI技术的IPSAN(STorageAreaNetwork)、流媒体网关可以作为存储解决方案的核心设备。
分布式存储集中管理共有三级,上级监控中心:上级监控中心通常只有一个,主要由数字矩阵、认证服务器和VSTARClerk软件等;本地监控中心:本地监控中心可以有多个,可依据地理位置设置,或者依据行政隶属关系设立,主要由数字矩阵、流媒体网关、iSCSI存储设备、VSTARRecorder软件等组成;音视频的数据均主要保存在本地监控中心,这就是分布式存储的概念;监控前端:主要由摄像头、网络视频服务器组成,其中VE4000系列的网络视频服务器可以带硬盘,该硬盘主要是用于网络不畅时,暂时对音视频数据进行保存,或者需要在前端保存一些重要数据的情况。
大数据的分析应用
不管是音视频、图片等传统安防数据,还是信息感知带来的数据,其数据的价值密度都较低,但是提纯后的数据意味着金矿,意味着财富,只有从海量数据中真正分析、挖掘出有意义的信息或规律,才能为商业行为指明方向,才能实现商业价值。如何从音频、视频、信息感知等数据中更迅速地完成有价值数据的获取?将这些安防类信息更好的服务于各种业务部门,如公安、交警等国家政府机构是大数据的方向。
大数据在政府职能部门的应用。借助数据分析平台,通过对以往大量案件的分析,推断出一些犯罪的模型和犯罪的“热点地区”,进行有效布置警力,最大限度的遏制犯罪的发生等。
大数据在商业领域的应用。借助数据分析的技术,科技进行人流分析、产品关注度分析、购买消费情况分析等等,这样能够形成一个庞大的商业参照表。
大数据在医学领域、教育领域、金融领域等等已经广泛涉及。包括对数据的挖掘和分析未来谁能透过大数据智能分析,预先把控行业发展的脉搏,他就将掌握市场和竞争的主动权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22