京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据计算你和学霸的距离
在成都最冷的20天里还能坚持早起吃早餐;总是在晚上10点到11点之间洗澡;在教学楼打水近80次……正值开学季,电子科技大学教育大数据研究所的数据显示,普通的你,和学霸之间,恐怕就差了这些“微不足道”的行为。
这个颇有意思的发现,来源于覆盖了电子科大两万余名本科生的大数据系统——“学生画像”,其将每名学生几乎所有的在校活动轨迹与成绩之间建立了关联。利用这些数据,不仅能预算出学生的学习状况,研究者还希望依此引导他们更好地规划各自的学业和就业方向。
学霸的生活轨迹
传统教育认为,学生有规律的生活,是学生提高成绩的重要保证。
“普遍情况下,良好的行为习惯与学习成绩是呈正相关的,这基本是得到公认的。”21世纪教育研究院副院长熊丙奇表示,这些行为习惯,有的与成绩变动直接相关,例如学生按时上下课,常去图书馆等;还有一些与成绩的变动是间接相关的,比如养成早起的习惯,经常洗衣服,有规律的打水等。“虽然不直接作用于学生的学习,但是,好的生活习惯,反映的是学生积极的状态,说明学生自我管理的能力较强。那么,这些学生用在学习上的时间也相对有保证,也就势必会对学习成绩产生影响。”
不过,必须承认,这个被普遍接受的结论很难被定量描述。“如果我们能定量地证明已有的依据,并提出科学的可参照的建议,这项研究就是有价值的。”电子科技大学教育大数据研究所副所长连德富这样解释这项研究的初衷。
如今,研究团队已经花了一年多的时间记录学生的校内行为,包括吃饭、购物、打水、进出图书馆、借阅图书、宿舍门禁、洗澡、使用洗衣机、乘坐公交等。结果发现,学霸有着与一般学生完全不同的学习生活轨迹。
以某专业排名第3的学生为例,她几乎每天固定在8点、12点、14点三个时间点出门,留在宿舍的总时长低于专业平均水平。而该专业成绩排名第61的小石每天进出宿舍的时间很随机,而且通常每次外出的时长不超过2小时,“宅指数”明显高于专业平均水平。
此外,成绩最好的学生吃早餐次数在110次,成绩最差的学生吃早餐次数仅为60次。9点前出现在食堂吃早餐的同学,成绩相对更好。成绩较好的学生集中在晚上10到11点之间洗澡,而成绩较差的学生,洗澡时间无明显规律。
除作息规律以外,进出图书馆次数也是重要指标。第一学期,成绩最好的学生进入图书馆的次数为55次,成绩最差的学生进入图书馆的次数为35次;到了第四学期,成绩最好的学生进入图书馆的次数为61次,成绩最差的学生进入图书馆的次数为18次。
同样的情况还存在于教学楼。学生去教学楼饮水机上打水次数越多,就说明学生长期在教学楼里活动。第三学期的数据显示,成绩最好的学生在教学楼打水近80次,成绩最差的学生在教学楼打水不到10次。
尤其让连德富印象深刻的是,不同成绩的学生在借阅图书的种类上也有明显的区别。他发现,《蝴蝶公墓》《变态心理学》等带有悬疑色彩的图书,借阅者的成绩普遍不理想。
过去,要想清楚地知道不同成绩水平的学生群体与他们的行为特征之间一一的对应关系是非常困难的,但有了大数据的帮助,一切变得简单起来。
“学生画像”还能做什么
仅仅根据学生行为习惯的数据统计,就可以制定出学霸路线吗?
要想精确刻画一个人需要用无数的数据,但连德富认为,校园就是一个拥有丰富数据的很小的社会系统,只要这些数据能与目标联系起来,就有一定的指示作用。
事实上,“学生画像”的首要功能,就是算出每名学生的学习、生活状态,并设计出一系列辅助他们更好规划各自学业的功能模块。目前已经实现的是挂科预警。
据了解,研究团队设计了一个针对挂科率的公式,即过去的学习基础+一段时期内的努力程度。学习基础是根据已考科目成绩、已考与将考科目之间的关联性计算得出的,而努力程度则主要依据教学楼打水频率、进出图书馆的时间与次数等。
如果有学生正处于挂科率高风险的边缘,系统就会自动向负责该名学生的辅导员发送预警信息。而在过去,只有当学生已经出现挂科的情况,辅导员才能得知,即便如此,事后也很难分析学生挂科的具体原因。
“目前,教育大数据暂时的定位还是辅助传统教育,管理、引导学生。”连德富表示。
除了关注学生成绩,他相信,现在的校园里依然充满了像当初的自己那样对未来迷茫的人。“我们都曾迷茫过,不知道自己喜欢什么,可以做什么。”
如何利用“学生画像”帮助学生找到适合自己的路,是研究团队正在努力的方向。目前,数据库不仅有现有学生的行为轨迹,还有已经毕业的学长们的行为轨迹。连德富告诉《中国科学报》记者,最终选择考研、出国或者创业的学生,在生活、学习方式上是存在一些差异的。
比如,打算出国的学生在选修课程、借阅图书时都会偏向语言方面的内容,而偏好创业的学生则与一项很有意思的数据产生关联。由于电子科大在成都郊区,学生进市区需要乘坐一趟班车,有的学生去市区的频率明显要高于其他同学,这也意味着他们的社交行为可能更为丰富。
“学生画像”可以将现有学生的行为轨迹与已经毕业的学长们的行为轨迹进行比对,如果在选课、借阅图书、参加社团活动等方面的轨迹与某类去向的毕业学生比较相似,学校就可以提供相关方面的建议、指导。
对此,21世纪教育研究院副院长熊丙奇也表示,传统的大学教育对学生的管理是比较松散的,因此,通过对学生生活、学习的数据分析,掌握学生的目标动向,有助于学校对学生进行合理的引导,无论是学习还是参与社会活动,都能够有的放矢地帮助学生作进一步规划。
中科院心理所研究员尹文刚则将关注点瞄准了当下大学生的心理健康问题。
“学生从高压的中学时期,进入完全需要自我管理的大学生活,一时间无法适应,容易出现心理问题。一旦受挫,通常选择回避的态度,甚至会出现抑郁的情况,更严重的可能危及生命。”尹文刚直言,近年来,大学生频繁曝出跳楼、伤害同学事件,都与心理健康密切相关。
他认为,通过教育大数据,可以及时掌握学生的行为习惯特征,一旦发生明显异常,比如长期独处、很少参与公共生活等情况,学校就可以适当关注学生的心理健康问题,采取相应对策。
研究团队正在挖掘“学生画像”在关注学生心理健康方面的作用。他们可以根据学生的行为习惯来量化“孤独”。
性格孤僻、有强烈的孤独感,往往被认为是抑郁易感人群具有的一些共性特征。他们发现,学校最孤独的一群人出现心理问题的概率比普通人高一个数量级。因此,研究团队正在设计算法,依据“30天内,两个素不相识的人,有两次或两次以上前后脚打水、打饭、进公寓、进出图书馆或坐公交车经历的概率,不超过十二万分之一”的结论,可算出每名学生的“在校朋友圈”,以此量化学生孤独的程度。
在尹文刚看来,预知大学生的行为习惯所隐含的心理问题,特别是关注学生的变化,对于开展学生工作是非常有帮助的。
从这些角度看,大数据在教育领域的应用是有一定价值的。
如何保护学生隐私
打水刷卡、进图书馆刷卡、进宿舍房间刷卡……在校园逐步实施一卡通的时代,学生大数据已经变得易得而且可控。学校一方面依靠大数据加强对学生的管理,一方面也要照顾到学生的隐私,尊重学生的行为习惯。因此,如何合理使用大数据,同时又保护学生隐私,就成为了一个重要的问题。
“如果让学生感觉生活在学校的监控下,那么即使学校的出发点是好的,希望能够对学生的行为及心理进行合理引导,这种举措也无疑会让学生反感。”熊丙奇特别提示学校在运用大数据的时候,要考虑到学生的隐私及习惯。
对此,连德富表示,“学生画像”在保护数据隐私方面是非常谨慎的。
“设计系统功能时,很重要的一方面是数据PK。”连德富介绍说,希望每名学生除了能在系统上看到自己的“画像”外,还能看到自己与同专业同学比较后的相对优势和劣势。“但是,比较的根本目的是找到学习的模板,而不是与具体的某个个体比高下。”
因此,在申请PK时,系统是存在强权限管理的。发起比对的学生必须经过对方的允许,才能看到对方的画像。但是连德富透露,由于该功能涉及的数据隐私比较敏感,目前并没有向学生端开放。
而已有的面向辅导员的端口,所涉及的数据经过严格的加密处理,系统不保存学生的真实姓名及学号,只有出现重要预警信息,才会自动给相应的辅导员进行短信推送。这意味着,任何一个技术人员都看不到学生个人的信息,而辅导员最多能够掌握自己负责学生可能出现的重大问题。
连德富坚持认为,教育大数据不会刻意强调每个个体的情况,而是反映学生整体的生活、学习状况,以及时预测预警学生的异常状况,从而为学校的决策提供数据支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24