京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个电商的“大数据”生存
王欣磊发现,最近,网上超市“1号店”在线购物车的转化率下降了。身为1号店副总裁的他,试图找出其中的原因:缺货,也许是一个直接因素,但除了缺货,其他细节也可能导致购物车转化率的下降。他知道,这些看起来似乎并不起眼的细节,统统增加了问题解决的复杂性。
作为电商产品设计领域的资深人士,王欣磊向来喜欢用数据分析问题。但越来越丰富的数据,也给他带来了新困惑:当一个数字在下降,另一个数字在上升时,如何证明这两者间具有相关性?购物车转化率下降的问题,便是一个典型的案例。
在最近兴起的“大数据”研究中,王欣磊尝试为自己的疑问找到答案,但结果却并不令人满意。“《大数据时代》那本书中提到,人们不再需要探究数据间的因果关系,而只需要知道相关关系。但在实际操作中,我们怎样判断这种相关关系是一段时间内的偶然现象,还是必然的趋势?这是个很大的问题。”
但即便面对种种困惑,“大数据”,对1号店来说依然是一座金矿,并已经开始从中有所收获。比如,1号店已经在帮商家分析商品之间的关联度,并以之为依据制定营销策略。比如,1号店发现,当可口可乐和奥利奥饼干的关联度特别高时,就可以推荐商家做联合营销。
1号店称,其每天的流量(独立IP)已高达400多万,而每一个访客又会看近10个页面。用1号店董事长于刚的话说,除了用户买什么或不买什么,“用户的浏览路径,先看哪个页面,后看哪个,通过哪个链接切换,用搜索还是类目浏览等,1号店统统都能掌握”,“基于这些数据,能做的事情太多了”。
挖掘每个用户
准确地说,1号店的“数据挖掘”起步于3年多前。彼时,公司购买了数据仓库,并建立了自己的BI(商业智能)团队,试图通过建立顾客的行为模型,来提供更精准化的服务。
不过那时,1号店的关注点还仅仅停留在用户的购买记录和收藏行为上。相比之下,它目前对数据的捕捉,显然更加“精细化”。无论是购买频次,还是用户的性别、年龄、习惯等,都能帮助它分析和跟踪消费模式的微妙变化,进而“投其所好”地实现最大化的销售。
譬如,当一个用户浏览了商品后没有购买,1号店紧接着便会分析整个购物过程“卡”在哪个环节上。假如商品已经加入了购物车,那么导致用户没有购买的很可能是高运费,1号店很可能会调整运费;倘若用户没有购买是因为库存缺货,那么下次库存到货后公司就会提醒用户购买;如果用户浏览了许多类似的商品却最终没有购买,那么可以推测用户对这一品类的商品感兴趣,只是没有找到自己想要的品牌。这种情况下,只要有新品上架,1号店就会第一时间推荐用户购买。
还有一种可能是,商品的价格太高吓退了顾客,那么一旦有关于该商品的促销,1号店就会提醒顾客购买。假如顾客依然没有购买,1号店就假设用户并不想要这个商品,而是想要类似商品,于是只要有类似的新品推出,公司就会作出推荐。
在此基础上,公司观察到许多用户的购买频次有其规律性,假如一个用户上1号店只购买洗发水,且每三周购买一次,那么一旦用户哪一次没有购买,1号店就会想方设法地“提醒”他。
除了最终购买的商品外,用户的浏览路径同样受到了重视。在于刚看来,这些看似不经意的行为里蕴含了大量信息。“一个简单例子是,用户进入1号店页面后第一个浏览的商品,就是他的目标商品。假如用户首先浏览了牛奶,那么你就应该推荐他不同品牌的牛奶。”他说道。当然,这里头还有许多推荐的“技巧”——如果用户对某一品牌的牛奶比较忠诚,那么1号店就不应推荐其他品牌的牛奶,而应推荐与牛奶搭配的面包、饼干或早餐谷物等。
那些购买目的性很强的用户,常常会使用搜索的方式进入所需商品的页面。对于这一类用户,1号店同样也会“直截了当”地推荐他们的目标商品;另一些用户喜欢“逛”,他们往往通过类目来选择商品,“比如先买吃的,再买喝的,最后买用的”。对于这类客户,1号店倾向于同时向他展示很多商品,特别是新品,满足其猎奇、“闲逛”的心理;而对于那些被促销页面吸引的用户,公司则会向他们展示热推或促销的商品,以推动其购买。
在1号店上购物的顾客,可能并不知道,自己每一次的购物行为,正帮助这家电商公司逐步了解自己,并为自己描摹出一幅大概的生活图景。据王欣磊称,1号店首先会根据用户的购买金额和频次将其分为四个大群,在用户大群的基础上,公司根据用户的浏览习惯,为其打上更为细致的“标签”。这种描绘用户个人信息及购买偏好的标签,多达成百上千个,“比如,他是倾向于购买哪一类商品的?他的浏览行为是什么,是喜欢搜索还是用类目浏览?他喜欢在上班时间购物,还是在周末购物?购买的周期和收货的习惯又是什么?”王欣磊说道,在将客户抽象为一个个具体的标签后,1号店便能有的放矢地进行营销。
他同时坦言,1号店并没有办法直接获得用户的性别、家庭状况、收入状况等信息,但可以通过几种方式去推测。一个明显例子是,公司可以根据用户的姓名,并结合一些购买行为,来推测用户的性别。
从今年起,中科院的一个研究小组也加入了1号店的客户数据研究中。双方研究的重点便聚焦在顾客的分群。“他们会将顾客分为忠实顾客、风险顾客(较易流失的顾客)和需要提升的顾客,并对不同顾客的行为做进一步的分析。”王欣磊称。
“大数据”噪音
除了对消费行为的分析研究,如何借助数据让产品价格更具竞争力同样重要。眼下,1号店后台的PIS(价格智能系统)每天实时在线搜索60多个网站和1700多万种商品的库存信息和价格信息,并根据竞争对手的商品价格实时调整自己的商品价格。
具体说来,在公司设置的价格模型中,不同的品类都有相应的市场价格策略。“譬如,有些品类的价格要做到业界领先,有些品类只要不高于竞争对手就行了。有些是我的利润品类,有些是流量品类。”于刚称,“我们在价格模型中设置底价后,系统就会根据对手的动态价格自动调整商品的价格。你知道,1号店有几百万种商品,完全没有办法用手工设置价格。”
于刚称,在1号店较为擅长的食品饮料领域,公司试图做到价格领先,“尤其是进口牛奶品类,60%的线上销售都是通过1号店走的”;而在服装等领域,公司追求的则是毛利。
尽管这些做法看起来无懈可击,但随着1号店的数据量越积越多,它也开始面临新的烦恼:比如,应该怎样将海量的数据进行过滤,去芜存菁?王欣磊并不讳言,“数据的纯洁性是一个很大的问题。”
不难理解,当公司由于促销而使得销量大增时,消费者在那一特定阶段的行为与未来的趋势无关;此外,一些季节性、节假日的数据也要过滤,而那些因为竞争对手的促销导致销量突然下滑的数据也要剔除在外。
除了外部干扰,消费者的个人操作中也包含着不少无效行为,这同样被视为一种“数据噪音”。于刚发现,有的用户上1号店并不是为了购物,而纯粹是为了测试网站,“他注册之后,往往下一个订单后取消,再下一个订单再取消,这些用户肯定不在我们的研究范围”。
相比之下,更大的难题在于,线下批发商对线上数据的干扰。据王欣磊称,一些地区的线下批发商可能是因为线上渠道的价格更便宜,于是通过各种渠道拿到优惠券在线上购买,再将货品转移到线下去卖。“批发用户拥有很多的注册账号,这对我们很不利,也给数据带来很大的干扰。”他指出,“我们会通过技术的手段去防批发,并不断地清理数据。但如何去验证真正的消费者数据,目前依旧是个很大的挑战。”
收集数据的下一步,是对数据进行分析和解答。事实上,面对同一组数据,不同的人从不同的角度分析,会得出全然不同的结论。也有人认为,随着数据量的增大,研究的准确性一开始会随之上升,但很快就会趋平。眼下,业界亦并没有形成放之四海而皆准的解读方法。从这个角度看,如何正确地解读数据,让数据模型越来越准确,是摆在所有电商企业面前的难题。
在复杂的模型之上,算法同样重要。1号店需要在极短的时间内,通过算法解读用户的行为,并在得到结论后做出实时的推荐。用于刚的话说,“当一个顾客用搜索来挑选商品时,我们的后台需要为这一搜索做支持,算法得非常快才行——否则用户等待的时间一长,就会不耐烦。”
不难发现,1号店对大数据的研究和运用,仍处于摸索阶段,而在全球范围内,这依然是一个新鲜的应用。很多时候,于刚会对新的数据应用感到兴奋,但有时,他也会显得力不从心——在他眼里,学术界如今已做了很多关于大数据的前瞻性研究,企业界则尝试着大量的应用,但两者间的关联并不大,甚至朝着截然不同的方向前行。换言之,在学术研究与实际应用中,尚有很大的鸿沟。
“我们需要把这两者有机地结合起来,把研究的结果放到实践中去,我觉得,这是最难的一点,也是最需要花力气的。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27