京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据走进繁华之后的企业应用磨合期
没有一个IT术语如大数据这般在瞬间被大家口口相传、每个人能说出所以然;也没有一个技术如大数据这般谁都能说却谁也不能说全;没有一个IT方案如大数据一样给予企业最美好的业务设想。大数据从国家层面到各行各业再到各个企业,都有其用武之地,甚至是未来发展的根基和法宝。
但是在被不断地认可之后,却总是有些隐忧存在。正如一个人处在巅峰时,受到的肯定愈多的时候,一定有很难被发现的弱点。大数据就是这样,被业界一片看好,从厂商到企业,大数据就这样用了很短的时间变得看上去很繁华。而繁华之后,其进入的应该一个是沉淀期。我们应该看到尽管大数据一再被肯定,但是其作为的成果并不多。尽管所有企业都知道大数据的好,但是去做的也不多。
只有小部分CXO拥护用大数据来加速转变
目前我们可以看到很多企业对于大数据的理解和应用都是相对简单的。而对于企业的高层来说,可能都知道数据的重要性,但是真正地借助大数据进行一些变革的并不多。
在去年,IBM在关于大数据的调研报告《分析:价值蓝图》中就指出,只有一小部分的高管(CXO)是大力用户用大数据和分析来加速决策制定和转变。其中的一个数据是,四分之一的CEO和COO率先提倡使用分析洞察。这是针对2013年的市场调研情况,这个比例比2012年增加了10%,但是却远没有达到一个繁华的状态。
所以其实从企业内部来说,可以认知到数据的重要性,但是并没有真的用起来。
这里面的原因有很多次,有整个产业发展成熟度的问题,也有厂商技术产品的原因。但是我们这里主要是具体到企业应用层面,这里主要是存在三方面的原因。
企业原始积累的数据并不能够足够支撑做相应的分析。大多数中国企业的信息化发展也是经历了相对粗放的过程,尤其在数据的积累上并没有做的很好。很多企业目前还是在整个相应的业务系统,以解决信息孤岛的问题。所以在这种数据基础上,企业还很难做相应的分析,更谈不上从数据分析中去创新了。
第二个方面原因是新获得数据的成本相对较高。很多说企业可以更加去了解自己的客户,知道他们所想、分析出潜在需求等等。但是对于多数企业来说,要去获得这些数据,人力成本和经济成本相对都比较高,所以更多的还是在观望状态。更多的企业是能把BI做清楚就已经很好了。
最后对于大数据的理解程度在企业内部也是层次不齐的。前面提到CEO和COO的主动性更强,因为这两个角色主要是站在业务角度。而大数据毕竟也会涉及到技术维度,这个主要是CIO层面。所以其实一个大数据项目要真正的在企业里进行,必然会触及很多部门,而每个部门的出发点和理解程度不一样,就相应地加大了大数据项目的开展。
所以,看到这些原因,我们会发现尽管大数据在声音上一片繁华,而真正在企业里的认知和应用才刚刚开始。而这种开始,我们更应该看到和挖掘的是一些典型的应用和最可能、最容易实现的领域,以大数据循序渐进地度过应用的磨合期。
大数据更加贴近个人服务层面
大数据和分析无疑依然会是2014年企业应用中最为热门的环节之一。调研机构Forrester刚刚发布的一个报告中就认为,企业客户将会更加主动地参与中国BI、大数据和分析领域的投资,尤其是银行/金融和零售组织机构。CIO们也必然会迎来关于大数据的众多讨论,其中包括大数据架构、预测性分析使用案例以及大数据相关技能和培训事宜。
而事实除了这种技术架构和技能层面的,对于企业而言,最核心的问题应该是找到大数据可发挥作用的领域。
Forrester提到的几个领域其实有个很大的共同点都会是与企业的终端个人客户体验有很大关系。而除了提到的金融、零售之外,事实像医疗、互联网这些领域,也会是大数据的爆发应用的行业,而应用的突破点应该就是在提高客户体验上。
在2013年的时候,我们也看到了一些这样的案例。比如IBM大数据方案在中网赛事中的应用,其一个很大的作用是提高个人网民对赛事的关注和参与度。另外更多的像我们之前提到的几个行业,一个很大的需求就是如果利用大数据提升客户体验。
比如金融行业,更多的传统金融机构的服务流程都相对比较复杂,这也是为什么互联网金融会给这个领域带来很大的冲击。因为现在的消费者更期待的是更加人性化、个性化的服务。
所以我们由此可以看到,之后大数据应用的大面积普及的突破点依然还是在这种直接对终端消费者的服务层面上。当然这种应用方向,对于企业原有的商业模式、工作流程都会是挑战。比如,原来企业的新产品设计的方向等可能更多取决于内部产品部的想法,而之后更需要做的是用大数据得来消费者的期待,然后再以此为根据去做相应的设计;而我们前文提到的,CXO的不同看法也必然是个挑战,CXO之间因为客户的导向而需要彼此磨合工作方式。
但是大数据全面进入企业应用,必然需要经历这样的磨合和沉淀,才能带来沉淀之后的又一次繁荣。
另外,对于一些相对传统的领域,大数据更大的作用是促进企业开始重视、整合数据,并对现有的数据有一定的分析能力,帮助企业更加了解自己、梳理业务流程。
因此总的来说,我们更认为大数据除了各种美好的设想之外,对于企业来说更应该是一步步建设过程。当经历了各种繁华的讨论之后,大数据在2018年应该走向的是企业应用的磨合期,磨合之后才会有更多的惊喜。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27