
企业大数据之梦 如何成为现实
提起大数据,相信很多人脑子里第一时间会想到一座闪着金光的金山,的确,大数据就如同一座金矿一般,蕴含着巨大价值,相信每一位关注IT技术创新的人都会听过这句话。
没错,从海量数据中筛选出有用的信息,然后通过各种手段将信息转化为洞察力,从而做出正确决策,推动业务发展。在这样一个信息链条中,企业需要确保每一个环节都不出错,才能将数据转化为价值。然而又有多少企业真正能做到这一点呢?少之又少!大数据很火,但是何时才能让大数据真正为企业带来盈利?
大数据将成为“下一代企业竞争力,生产力以及创新的前沿”。但现状是,许多企业和管理者开始盲目收集数据并进行分析,期待能够得到快速的回报。很遗憾,他们未能如愿。大多数企业距离从数据中提取利润都差着十万八千里,这可不仅仅是缺少合适的技术。想让大数据真正对企业盈利造成影响,就需要解决三大根深蒂固的挑战。
第一,“拍脑袋”做决策的方式还很普遍。在商业世界里,“最高权利者”的意见对决策会造成极大影响,这种现象非常普遍。这是许多企业的通病,大数据可以对此进行纠正。然而真正做到需要企业观念的转变,领导在做出决策时要摆脱“拍脑袋”的坏习惯,让真实的数据说话。只是收集更多数据,对于推翻这种心态一样于事无补,甚至会让观念的转变过程变得更加艰难。
第二个挑战就是人才技能的不足。就目前来说,能玩转大数据的人才远远无法满足企业的需求量。硅谷之父万尼瓦尔·布什(Vannevar
Bush)在70年前就说过这样一句经典的话:“未来将会有信息的开荒者,这些人会在大量普通记录中寻找线索,并自食其乐。”然而,根据麦肯锡机构的报告,目前在美国只有19万接受过严格训练的数据分析师,这一数量远远无法满足大数据时代的需求。
企业管理者不必非要招聘一群数据科学家级别的精英来直接向其汇报,他们需要在各个层面鼓励机构培养分析师,传授核心技能、最佳实践,在此过程中要尽量做到精确。这样能够增加透明度,鼓励对数据的需求并帮助传播必不可少的技能。
知道如何处理数据则是第三个挑战。即便在解决上述两个问题之后,也要弄清什么样的业务能够通过大数据获得收益。如果不能指导行动,那么收集再多的数据也是毫无意义的。事实上,获得洞察力是一方面,可实践性也是分析的标志之一。那么企业能否从大量历史数据的“噪音”中获得可实践的预测以及具有前瞻性的决策?
举例来说,一家手机制造商也许能够收集大量的消费者数据,除非这些数据能够应用到实践当中,从而改善客户体验,否则它只具有理论上的价值。再比如,一家连锁零售企业通过精准的邮件营销获得客户的信息,但如果销售部门没有合理利用这些信息,那么销售机会就会稍纵即逝。大数据想要获得大成功,数据的文化就必须传播给企业的每一位员工。
评论:
在大数据时代下,如何将企业的大数据之梦变成现实,是很多企业都面临的问题,对于企业而言,要做的,是理解数据的重要性,然后在规划的每一个阶段以及企业的每一个层级中充分利用数据。掌握小数据部署利用好大数据的充分条件,而是必要条件。企业关注的重点应该是,让更多的员工,更有规律地,更好地利用那些可管理的数据。然后让业务逐渐能够基于数据来采取行动,只有这样才能让大数据之梦成为现实。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04