京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在O2O领域的应用
在O2O领域,各个移动互联网应用无时无刻不在生产数据,而数据分别存储在各家公司或应用的数据库服务器中,在大数据背景下,单打独斗已无法胜任深度的数据分析与挖掘,传统企业需要的是基于大数据的智能优化与辅助决策。
百度昨天被推出了以开放云、数据工厂、百度大脑三者为核心的大数据引擎,这是个非常有趣的事情。尽管对于百度这个肉山大魔王,我们总是明里暗里的黑,但不得不说这个引擎的推出是有增加全社会福利的潜质。
对于大数据这个概念,这两年挺火的。但在我看来,真正能够应用到大数据的也就BAT三家,原因自然是因为他们都有着恐怖的流量作为支撑。而通常情况下样本数越大,误差也就越小。不过这种基础的常识显然还不够普及,所以有无数的公司还能以大数据为概念去忽悠人,在此也就不过于多说。
那么大数据引擎的意义在哪里呢?
主要体现在三个方面:
一,能够更好的优化公共基础设施
互联网改造传统行业的论调一直在说,但真正的到了移动互联网时代才能够真正的说有一定意义。原因在于,原本的网络是固定的,顶多能够通过一个地区对于一个关键词的搜索量是否快速的提高,来预测这个地区发生了什么事情。进而做出一些相应的措施,可是这样的维度是很单一的。
但是现在却可以通过定位技术获得个人的地理位置,这就大大的扩展了信息的维度。一方面能够扩展了预测的精准度。另一方面也能够扩展出一些其他的服务。比如在春运期间百度推出的迁徙图。就可以用于来年交通工具的优化分配。又比如说,中国疾病预防控制中心也能通过多维度的数据分析,来预测流行性疾病的发生。
这对于公共的基础设施建设显然是有着促进的作用,同时对于城市的管理者,对于整个城市的居民而言,其也有了更多的数据去支撑其决策,支撑其用更科学的方法去改善城市的周边环境。
二,降低开发者对于大数据的应用
正像之前所说的,个人一直认为只有BAT三家才有做大数据的实力。那么对于普通的企业或者是创业者来说,其只能通过付费或者是投靠这三家来获得相应的数据支持。但是对于个人来说其几乎是没有任何的办法去参与其中的。不过百度此次对数据分析方法、数据模型的开发(虽然是通过邀请制),使得个人能够参与到其中。
这让更多人能够免费的享受到大数据带来的福利,一定程度的降低了创业者或者是个人的开发成本。这对于未来以个人为核心的产品制造产业会有非常大的促进作用。只不过根据历史来看,免费的持续时间或许不会特别的长。
三,机器大脑带来的技术革新潜力
对于机器大脑的说法目前还比较的遥远。目前百度的百度大脑项目也只能模拟二、三岁的儿童。但随着技术的不断积累。会有量变达到质变的效果。举个简单的例子,目前国内外的整体语音搜索识别率在70%左右,在数字上虽然看起来很高,但在实际使用中会让用户有很深的挫败感,所以目前语音搜索的使用率还比较低(除去查人名时,因为词组、名字的识别率已经达到98%左右)。但是当语音搜索的准确度能够达到99%甚至百分之100%时,那时候对于搜索产业显然会有革命性的改变。
因此来说,百度此次对于大数据引擎的开放,对于公共基础设施的建设(改造传统产业),对于降低个人开发者的开发成本,以及未来可现象技术革新方面,都是有着特殊的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01