京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在O2O领域的应用
在O2O领域,各个移动互联网应用无时无刻不在生产数据,而数据分别存储在各家公司或应用的数据库服务器中,在大数据背景下,单打独斗已无法胜任深度的数据分析与挖掘,传统企业需要的是基于大数据的智能优化与辅助决策。
百度昨天被推出了以开放云、数据工厂、百度大脑三者为核心的大数据引擎,这是个非常有趣的事情。尽管对于百度这个肉山大魔王,我们总是明里暗里的黑,但不得不说这个引擎的推出是有增加全社会福利的潜质。
对于大数据这个概念,这两年挺火的。但在我看来,真正能够应用到大数据的也就BAT三家,原因自然是因为他们都有着恐怖的流量作为支撑。而通常情况下样本数越大,误差也就越小。不过这种基础的常识显然还不够普及,所以有无数的公司还能以大数据为概念去忽悠人,在此也就不过于多说。
那么大数据引擎的意义在哪里呢?
主要体现在三个方面:
一,能够更好的优化公共基础设施
互联网改造传统行业的论调一直在说,但真正的到了移动互联网时代才能够真正的说有一定意义。原因在于,原本的网络是固定的,顶多能够通过一个地区对于一个关键词的搜索量是否快速的提高,来预测这个地区发生了什么事情。进而做出一些相应的措施,可是这样的维度是很单一的。
但是现在却可以通过定位技术获得个人的地理位置,这就大大的扩展了信息的维度。一方面能够扩展了预测的精准度。另一方面也能够扩展出一些其他的服务。比如在春运期间百度推出的迁徙图。就可以用于来年交通工具的优化分配。又比如说,中国疾病预防控制中心也能通过多维度的数据分析,来预测流行性疾病的发生。
这对于公共的基础设施建设显然是有着促进的作用,同时对于城市的管理者,对于整个城市的居民而言,其也有了更多的数据去支撑其决策,支撑其用更科学的方法去改善城市的周边环境。
二,降低开发者对于大数据的应用
正像之前所说的,个人一直认为只有BAT三家才有做大数据的实力。那么对于普通的企业或者是创业者来说,其只能通过付费或者是投靠这三家来获得相应的数据支持。但是对于个人来说其几乎是没有任何的办法去参与其中的。不过百度此次对数据分析方法、数据模型的开发(虽然是通过邀请制),使得个人能够参与到其中。
这让更多人能够免费的享受到大数据带来的福利,一定程度的降低了创业者或者是个人的开发成本。这对于未来以个人为核心的产品制造产业会有非常大的促进作用。只不过根据历史来看,免费的持续时间或许不会特别的长。
三,机器大脑带来的技术革新潜力
对于机器大脑的说法目前还比较的遥远。目前百度的百度大脑项目也只能模拟二、三岁的儿童。但随着技术的不断积累。会有量变达到质变的效果。举个简单的例子,目前国内外的整体语音搜索识别率在70%左右,在数字上虽然看起来很高,但在实际使用中会让用户有很深的挫败感,所以目前语音搜索的使用率还比较低(除去查人名时,因为词组、名字的识别率已经达到98%左右)。但是当语音搜索的准确度能够达到99%甚至百分之100%时,那时候对于搜索产业显然会有革命性的改变。
因此来说,百度此次对于大数据引擎的开放,对于公共基础设施的建设(改造传统产业),对于降低个人开发者的开发成本,以及未来可现象技术革新方面,都是有着特殊的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22