京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家 / 统计学家应该养成哪些好习惯
做过一点统计模型,做过一点数据分析,现在工作名字叫数据科学家,厚着脸皮抛砖引玉,聊聊数据分析中需要养成的良好习惯。
1. 了解数据分析的目的/需求
做数据分析的新人可能都遇到过,辛辛苦苦花了几个小时做出来的结果,跟客户 / 合作伙伴 / PM / 老板要的不是一个东西,运气好的话回去修补一下,花个半小时之类的,运气不好的话直接推倒重来,搞不好又得晚上加班了。
比如说下午六点,正准备收拾东西回家,PM 跟你说想看知乎用户的活跃度,跟数据分析师提出需求说,我们来看看大家使用时长吧。那么问题来了,是看平均呢还是看中位数?是看某一种客户端比如移动端吗,或者是想每种客户端都分开来看?要根据用户的注册时间来做下划分吗?是否想看具体某个城市的?
甚至再退后一步,PM 想看这个干什么?仅仅是好奇,还是现在有个很重要的决定需要以此为基础?数据分析师需要以此来决定这件事情的优先级,是可以推回去的呢?还是说需要立马动手做,下班之前就需要给结果的。
二十岁的人生,三十年的工作经验,都是加班闹的。
2. 用常识来验证结果
虽然说数据说话,但是前提是数据来源、分析过程、解读等都是正确的。如何保证结果的正确性,最基本的一点就是不同方面来快速验证一下数量级。
比如说 PM 想看知乎用户使用 Live 的数量,发现迄今为止有 50 万 iPhone 用户点击了 Live 的页面,2 万安卓用户点击了 Live 的页面。同时还知道知乎有五百万 iPhone 日活,而安卓的日活是三千万,由此可见 iPhone 用户就是舍得花钱啊,同时安卓用户那里还有很大的机会。然后简单比较一下可以发现,二者的参与率差了 150 倍,常识判断这差得有点太大了,难以解释。再仔细研究一下数据来源发现,原来安卓客户端的数据记录是取样 1% 的,所以直接看只有 2 万安卓用户点击,但实际上应该在两百万左右,这样一来 iPhone 和安卓的差别就比较合理了。
时刻谨记常识
3. 时刻注意数据分析的结果是否具有误导性
经常说的一句话叫“数据会说谎”。然后数据自身是不会说谎的,而是取决于如何做数据分析、如何展示结果。有时候是数据分析无意中引入了误导性元素,比如说不合理的坐标轴,有时候是刻意引入某些误导性元素,以达到特别的目的,这些都是应该尽量避免的。
比如说下图同样的增幅,因为用了不同的 y 轴,左右看起来就完全不一样了。如果听众没有仔细看坐标轴而仅仅看图形的话,妥妥的就被忽悠了。
此外还有一些数据分析中常见的错误,可以参考下面文章:
数据分析中会常犯哪些错误,如何解决?
4. 想想你的听众是谁
数据很多时候不仅仅是一个人埋头苦干,还需要跟人交流,比如说跟合作伙伴的沟通,跟老板的沟通,跟其他组员的沟通,跟不同部门的人沟通。针对不同的听众,相应的需要强调不同方面。
比如说跟合作伙伴沟通的时候,可能他们知道你做这个的目的是什么,可能会对结果更感兴趣,以及由数据提供了什么建议或者决定。至于具体数据来源或者分析方法之类对他们来说不是那么重要,大多数时候只要确保数据分析师知道自己在做什么就可以了。
跟老板沟通结果的时候,大部分时候可能他们知道你做的大致方向,对分析思路的方法基本一点就通,细节方面可能无法面面俱到。
而跟不同部门的人沟通的时候,分享数据分析的结果之前,最好还能讲讲这件事情的目的,一些背景,大方向是什么诸如此类。
5. 动手之前先看看这件事情是不是已经有人做过了
这点在大一点的公司尤其明显,PM 或者老板提出一个需求,或者数据分析师自己对某一个问题感兴趣,然后想也没想,就 SQL 写得飞快跑了起来。很快一天过去了,产出了一大堆数据和报表,被自己的高效感动了,收拾书包回家。
晚上打开电脑,突然不知道哪根经搭错了,想白天做的这个事情会不会已经有人做过了呢?于是内网搜了一下,豁然发现某个角落里有一堆早就做好的 pipeline,数据、报表一应俱全,90% 想要的结果都在里面了,真是不知道该哭还是想笑。
数据分析很多时候是不需要重新造轮子的。
6. 数据大小很重要又不重要
几年前,有个大数据的笑话,Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it. 看不懂的请 google translate.
几年过去了,teenage 应该也长大成人不再是 teenage sex 了,很多时候大家是真的在做大数据了。虽然 size matters,但是数据分析师更应该关注数据能提供什么价值。
本来想放个 size matters 的图,然后 google 了一下之后,出来的都是办公室不宜的,所以你们自己脑补吧。
7. So what?
描述性的数据据分析很重要,是了解用户,了解产品,感受大方向的基础。比如针对知乎活跃用户做个画像,发现 55% 男性,40% 女性(别问我剩下 5% 怎么回事),70% 年薪百万,80% 985/211,90% 健身,100% 都是活跃用户(废话),如此种种。这么一大堆图表、信息堆起来之后,需要仔细想想这到底说明了什么问题?对改进产品有什么启示,比如说开个健身爆照专栏轮带逛?如果仅仅是停留在描述性数据分析阶段的话,那么就无法发挥数据的最大作用,从数据的角度引导产品的改进。
ps. 引导产品改进可以是多个方面的,数据引导仅仅是其中的一部分。
8. 保持好奇心
数据分析不是一个新的学科,但是工具、内容、应用方向等一直在不断改变,所以保持好奇心,持续学习进步,探索新领域对长期发展是最重要的一点,(个人认为)没有之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07