
以电商为例,数据分析的5个思维方法
数据分析真的很重要,能从一堆看似杂乱的数据里,找到问题并解决问题。从数据上的变化,来判断甄别效果得失;简直是居家旅行,运营生意的必备良品。
首先,我们要知道,什么叫数据分析。其实从数据到信息的这个过程,就是数据分析。数据本身并没有什么价值,有价值的是我们从数据中提取出来的信息。然而,我们还要搞清楚数据分析的目的是什么?目的是解决我们现实中的某个问题或者满足现实中的某个需求。
那么,在这个从数据到信息的过程中,肯定是有一些固定的思路,或者称之为思维方式。
第一大思维——对照
“对照”俗称对比,单独看一个数据是不会有感觉的,必需跟另一个数据做对比才会有感觉。比如下面的图a和图b。
图a毫无感觉
图b经过跟昨天的成交量对比,就会发现,今天跟昨天实则差了一大截。
这是最基本的思路,也是最重要的思路。在现实中的应用非常广,比如选款测款丶监控店铺数据等,这些过程就是在做“对照”,分析人员拿到数据后,如果数据是独立的,无法进行对比的话,就无法判断,等于无法从数据中读取有用的信息。
第二大思维——拆分
分析这个词从字面上来理解,就是拆分和解析。因此可见,拆分在数据分析中的重要性。在派代上面也随处可见“拆分”一词,很多作者都会用这样的口吻:经过拆分后,我们就清晰了……。不过,我相信有很多朋友并没有弄清楚,拆分是怎么用的。
我们回到第一个思维“对比”上面来,当某个维度可以对比的时候,我们选择对比。再对比后发现问题需要找出原因的时候?或者根本就没有得对比。这个时候,“拆分”就闪亮登场了。大家看下面一个场景。
运营小美,经过对比店铺的数据,发现今天的销售额只有昨天的50%,这个时候,我们再怎么对比销售额这个维度,已经没有意义了。这时需要对销售额这个维度做分解,拆分指标。
销售额=成交用户数*客单价,成交用户数又等于访客数*转化率。详见图c。
图c是一个指标公式的拆解
拆分后的结果,相对于拆分前会清晰许多,便于分析,找细节。可见,拆分是分析人员必备的思维之一。
第三大思维——降维
是否有面对一大堆维度的数据却促手无策的经历?当数据维度太多的时候,我们不可能每个维度都拿来分析,有一些有关联的指标,是可以从中筛选出代表的维度即可。如下表
这么多的维度,其实不必每个都分析。我们知道成交用户数/访客数=转化率,当存在这种维度,是可以通过其他两个维度通过计算转化出来的时候,我们就可以“降维”。
成交用户数丶访客数和转化率,只要三选二即可。另外,成交用户数*客单价=销售额,这三个也可以三择二。
另外,我们一般只关心对我们有用的数据,当有某些维度的数据跟我们的分析无关时,我们就可以筛选掉,达到“降维”的目的。
第四大思维——增维
增维和降维是对应的,有降必有增。当我们当前的维度不能很好地解释我们的问题时,我们就需要对数据做一个运算,增加多一个指标。请看下图。
我们发现一个搜索指数和一个宝贝数,这两个指标一个代表需求,一个代表竞争,有很多人把搜索指数/宝贝数=倍数,用倍数来代表一个词的竞争度(仅供参考)。这种做法,就是在增维。增加的维度有一种叫法称之为“辅助列”。
“增维”和“降维”是必需对数据的意义有充分的了解后,为了方便我们进行分析,有目的的对数据进行转换运算。
第五大思维——假说
当我们拿不准未来的时候,或者说是迷茫的时候。我们可以应用“假说”,假说是统计学的专业名词吧,俗称假设。当我们不知道结果,或者有几种选择的时候,那么我们就召唤“假说”,我们先假设有了结果,然后运用逆向思维。
从结果到原因,要有怎么样的因,才能产生这种结果。这有点寻根的味道。那么,我们可以知道,现在满足了多少因,还需要多少因。如果是多选的情况下,我们就可以通过这种方法来找到最佳路径(决策)
当然,“假说”的威力不仅仅如此。“假说”可是一匹天马(行空),除了结果可以假设,过程也是可以被假设的。
我们回到数据分析的目的,我们就会知道只有明确了问题和需求,我们才能选择分析的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15