京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于标记数据学习降低误报率的算法优化
无论是基于规则匹配的策略,还是基于复杂的安全分析模型,安全设备产生的告警都存在大量误报,这是一个相当普遍的问题。其中一个重要的原因是每个客户的应用场景和数据都多多少少有不同的差异,基于固定判断规则对有统计涨落的数据进行僵化的判断,很容易出现误判。
在没有持续人工干预和手动优化的情况下,策略和模型的误报率不会随着数据的积累而有所改进。也就是说安全分析人员通过对告警打标签的方式,可以将专业经验传授给智能算法,自动得反馈到策略和模型当中,使之对安全事件做出更精准的判断。本文介绍利用专家经验持续优化机器学习的方法,对告警数据进行二次分析和学习,从而显著地降低安全威胁告警的误报率。
为了降低误报率,当前大体上有两种技术途径:
根据不同客户的各种特定情况修正策略和模型,提高策略或者模型的适应能力;
定期(如每月一次)对告警进入二次人工分析,根据分析结果来调整策略和模型的参数配置。
这两种方法对降低误报率都有一定的作用。但是第一种没有自适应能力,是否有效果要看实际情况。第二种效果会好一些,但是非常耗时耗力,而且由于是人工现场干预和调整策略和模型,出错的概率也非常高。
MIT的研究人员[1] 介绍了一种将安全分析人员标记后的告警日志作为训练数据集,令机器学习算法学习专家经验,使分析算法持续得到优化,实现自动识别误报告警,降低误报率的方法(以下简称“标签传递经验方法”)。这种把安全分析人员的专业智能转化成算法分析能力的过程,会让分析算法随着数据的积累而更加精确。继而逐渐摆脱人工干预,提高运维效率。如下图所示:
下面我们通过基于“频繁访问安全威胁告警”模拟的场景数据来介绍一下实现机制。
什么是频繁访问模型?逻辑比较简单:一段时间内(比如1分钟),一个攻击者对系统的访问次数显著高于普通访问者的次数。此告警规则可以用简单的基于阈值,或者是利用统计分布的离异概率。基于此,我们先模拟一些已经被安全分析人员打过标签的告警数据。根据实际应用经验,我们尽量模拟非常接近实际场景的数据。如下图:
关于模拟数据的介绍:
总共模拟了20天的告警数据,从2017-01-01到2017-01-20。前10天的数据用来训练模型,后10天的数据用来衡量模型的表现;
每个告警带有是否误报的标签。红色代表误报,蓝色代表准确告警。
关于模拟数据的假设:
误报聚集在某个时间段,模拟数据假设的范围是18:00-19:00。在安全运维实践中,的确存在某个特定的时间段,由于业务逻辑或者系统原因导致误报增多的现象。所以上述假设是合理的,告警时间可以作为有效的特征值。但并不是所有的误报都聚集在这个时间段,同时并不是这个时间段的所有告警都是误报;
误报大多来自于一批不同的IP。所以访问来源IP也是有用的特征值;
任何数据都不是完美的,所以在模拟数据中加入了~9%的噪音。也就是说再完美的智能模型,误报率也不会低于9%。
这些假设在实际的应用场景中也是相对合理的。如果误报是完全随机产生的,那么再智能的模型也不能够捕捉到误报的提出信号。所以这些合理的假设帮助我们模拟真实的数据,并且验证我们的机器学习模型。
简要模拟数据的代码实现:
下图显示利用PCA降维分析的可视化结果,可以看到明显的分类情况:
红色代表误报,蓝色代表正确告警。基于设定特征值的降维分析可以得到两个聚集,即误报和非误报有明显的区分的,也就是说误报的是有一定规律,不是完全随机的,因此是可以被机器学习捕捉到的。
简要代码实现:
基于模拟数据,我们想要达到的目的是通过持续的强化机器学习能够降低误报率。所以我们采取的策略是:
训练一天的数据2017-01-01,测试10天的数据2017-01-11到2017-01-20;
训练两天的数据2017-01-01到2017-01-02,测试10天的数据2017-01-11到2017-01-20;
以此类推,来看通过学习越来越多的数据,在测试数据中的误报率是否能够得到不断的改进。
简要代码如下:
此安全威胁场景相对简单,我们不需要太多的特征值和海量的数据,所以机器学习模型选择了随机森林(RandomForest),我们也尝试了其他复杂模型,得出的效果区别不大。测试结果如下:
达到我们所预期的效果,当训练数据越来越多的时候,测试数据当中的误报率从20%多降低到了10%。通过对告警数据和标签的不断自学习,可以剔除很多告警误报。前面提到,数据当中引入了9%的噪音,所以误报率不会再持续的降低。
srcIP,访问源IP
timeofday,告警产生的时间
visits,访问次数
destIP,被访问IP
下图显示了特征值在模型中的重要性:
和我们的预期也是一致的,访问源IP(srcIP)和告警发生的时间(timeofday)是区分出误报告警效果最好的特征值。
另外,由于随机森林模型以及大部分机器学习模型都不支持分类变量(categoricalvariable)的学习,所以我们把srcIP和destIP这两个特征值做了二值化处理。简要代码如下:
总结
本文通过一组模拟实验数据和随机森林算法,从理论上验证了“标签传递经验方法”的有效性。即通过安全分析专家对告警日志进行有效或误报的标记,把专家的知识技能转化成机器学习模型的分析能力。和其他方法相比,此方法在完成自动化学习之后就不再需要人工干预,而且会随着数据的积累对误报的剔除会更加精确。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16