京公网安备 11010802034615号
经营许可证编号:京B2-20210330
将大数据量导成Execl表思路
一、需求
最近客户有一个需求,将多个物理表导成Execl表,可是问题是其中有几个表的数据量在20W以上,一个Execl的Sheet只能导入65536条数据,直接使用SQL Server的导出功能,不能实现该效果。
二、解决思路
从网上搜索相关的解决办法,原来是想有专门的软件实现该功能,用搜狗没找到,只找到邹建的存储过程,能够通用将一张表里的数据导入到一张Execl的多个Sheet中,相关的代码大家可以搜索网络,这里就不在帖出来了,但是有一个问题,就是如果一个表的数据大于20W的时候,这个存储过程执行会出错,出现“超出资源”。
于是自己想了一个办法,分两步来解决导出到Execl的问题,第一步,将一个大数据量的表格,按照6W一个表分拆成多个表格。第二步利用SQL Server本身的导出功能,将多个表格的数据导入到一个Execl中。
三、解决办法
第一步采用一个通用的存储过程将一个物理表拆分成多个表格,存储过程如下:
-- =============================================
-- Author: George
-- Description: 为了能将大数据量的表导出到Execl,将表按照6w的规模拆分成多个表
-- Sample: exec sp_splittable 'tableName' --会按照原来的表名称拆分成多个表,拆分的表名称后缀通过1,2,3
-- =============================================
CRTEATE PROCEDURE [dbo].[SP_SPLITETABLE]
@tableName varchar(100)
AS
BEGIN
declare @rows int,@temptable varchar(100),@sql varchar(500)
declare @insertSql varchar(1000)
declare @tablenum varchar(100)
set @temptable='temp'+convert(varchar(38),newid())
set @sql='select Identity(int,1,1) as tempid,* into ['+@temptable+'] from '+@tableName
exec(@sql)
set @rows=@@ROWCOUNT
if @rows=0 return
declare @tablecount int,@tablenow int, @recordcount int, @recordnow int
declare @pagesize int
declare @tableindex int
set @pagesize = 60000 --每个表的大小
set @tableindex =1
set @tablecount = CEILING(@rows/CAST(@pagesize as float))
set @tablenow = @tablecount
set @recordnow= 0
IF @tablecount = 1 return
IF @tablecount > 1 begin
WHILE @tablenow > 1 begin
set @tablenum=@tableName+rtrim(ltrim(str(@tableindex)))
if @tablenow=@tablecount begin --只有一个表格
set @insertSql='select top '+rtrim(ltrim(str(@pagesize)))+' * into '+@tablenum+' from ['+@temptable+']'
exec (@insertSql)
end
IF @tablenow < @tablecount begin
set @insertSql='select top '+rtrim(ltrim(str(@pagesize)))+' * into '+@tablenum+' from ['+@temptable +'] where tempid not in (select top
'+rtrim(ltrim(str(@recordnow-@pagesize)))+' tempid from ['+@temptable+']
)'
exec (@insertSql)
end
set @recordnow = @pagesize*(@tablecount-@tablenow+2)
set @tablenow = @tablenow -1
set @tableindex=@tableindex+1
END
END
set @sql='delete from ['+@temptable+']'
exec(@sql)
END
第二步利用SQL Server本身的导出功能,将多个表格的数据导入到一个Execl中
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31